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Abstract 

This report presents results from full-scale accelerated pavement testing of 
warm-mix asphalt (WMA) mixtures designed for airfield pavements. 
Three WMA mixtures were evaluated and compared to a control hot-mix 
asphalt (HMA) mixture. Data are presented from instrumented pavement 
test sections of WMA and HMA trafficked using a heavy-vehicle simulator 
(HVS-A) configured with an F-15E military jet aircraft wheel with a high 
load, high tire pressure and at high pavement temperatures. Surface 
permanent deformation is presented as a function of number of traffic 
cycles for the different pavement sections. Pavement instrumentation data 
are presented to show that rutting performance was not influenced by any 
differences in the structural capacity of the supporting layers. Additional 
testing was conducted on areas of the test sections not trafficked by the 
HVS-A to assess any potential problems associated with grooving the 
surface of WMA airfield pavements and to compare the performance of 
grooved WMA to that of grooved HMA. The results from this research 
demonstrated that WMA is a viable alternative to HMA for use on heavily 
trafficked airfield pavements. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

The hot-mix asphalt (HMA) industry seeks emerging technologies that 
reduce environmental impact during production of bituminous paving 
materials. In recent years, warm-mix asphalt (WMA) has replaced HMA for 
many paving projects. WMA is a general description for asphalt concrete 
that is produced at lower temperatures than conventional HMA. Many 
techniques have been developed to produce WMA, including chemical 
additives, organic wax additives, and foaming. Many state departments of 
transportation (DOTs) are quickly adopting WMA for roadway paving, and 
many are using it in place of conventional HMA. As the states’ departments 
of transportation gain experience with WMA, conventional HMA may 
become less available for paving. Empirical evidence to date indicates that 
WMA performs well on highways and has the potential to be adopted for 
airfield pavements.  

1.2 Previous Work 

The study presented in this report is part of a larger research effort that 
has been conducted by the US Army Corps of Engineers to evaluate WMA 
technologies and provide guidance on their use for airfield pavements. A 
general description of the WMA research is summarized in the following 
paragraphs and presented in the flow chart in Figure 1.  

In FY10, the ERDC was tasked with evaluating the laboratory performance 
of different WMA technologies in order to certify their use for airfield 
pavements. The performance of mixtures produced in the laboratory using 
different WMA technologies was compared to the performance of the same 
mixtures produced at HMA temperatures. Properties assessed included 
susceptibility to permanent deformation, moisture damage and low-
temperature cracking, durability, and workability. The use of high recycled 
asphalt pavement (RAP) contents was also evaluated. Results indicated 
that WMA was a viable product for airfield pavement surface mixtures. 
Guidance for the use of WMA on airfields was developed and published in 
a Unified Facilities Guide Specification (UFGS 32 12 15.16) and an 
Engineering Technical Letter (ETL 11-3). Specific details on the WMA 
laboratory evaluation conducted in FY10 are presented in Mejías-Santiago 
et al. (2012).  
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Figure 1. WMA research flow chart. 

 

In FY12, the team conducted additional research to validate the results 
from the FY10 laboratory performance evaluation using results from full-
scale testing and laboratory testing on plant-produced WMA mixtures. For 
this purpose, a full-scale test section consisting of four test items was 
designed and constructed at ERDC’s pavement testing facility (Hangar 4) 
to evaluate the performance of a mixture produced using three different 
WMA technologies and to compare the performance of the same mixture 
produced at HMA temperature. This second study consisted of three main 
parts: 1) laboratory performance evaluation of field mixtures, 2) evaluation 
of design, production, and construction procedures, and 3) full-scale 
simulated aircraft traffic evaluation.  

For the first part of the study, a laboratory evaluation was conducted using 
mixture samples collected at the asphalt plant and from the test section 
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constructed. A suite of laboratory tests was conducted to evaluate the 
performance of the plant-produced WMA mixtures and to compare it to the 
plant-produced HMA mixture. In addition, the performance of 11 different 
laboratory-produced WMA mixtures was studied. Properties evaluated 
included susceptibility to moisture damage, permanent deformation, and 
binder performance grade. Results showed that WMA’s potential for 
permanent deformation was somewhat greater than HMA for both 
laboratory and field mixtures. WMA also exhibited poorer performance 
than HMA in moisture damage tests on laboratory-produced specimens. 
However, the plant-produced WMA mixture indicated very little difference 
compared to HMA. Also, there were some differences in performance 
among WMA mixtures, but these were not attributed to a specific WMA 
technology category. Specific details on the first portion of the study are 
presented in Doyle et al. (2013).  

In the second part of the study, WMA mix design, plant production, and 
placement were evaluated and compared to those of HMA. The research 
team did not find anything critical that would preclude the use of WMA for 
airfield pavements and recommended the use of specifications included in 
UFGS 32-12-15.16 to govern constructing airfield pavements with a WMA 
surface. A more detailed description of the second portion of the study is 
presented in Rushing et al. (2013).  

Finally, the test section was evaluated under simulated F-15E aircraft 
traffic in the third part of the study, and the results are presented in this 
report. The main focus of this report consists of comparing field 
performance of WMA to HMA for recommending its use in airfield 
pavements.  

1.3 Objectives  

The objectives of this report include: 

 presenting the results from the full-scale simulated aircraft traffic 
evaluation of WMA compared to conventional HMA, and  

 presenting results from the evaluation of surface grooving on WMA 
compared to conventional HMA. 
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1.4 Approach 

The approach of this field evaluation consisted of trafficking four test 
items (three WMAs and one HMA) using HVS-A simulated F-15E traffic. 
Testing was conducted at high pavement temperature, high tire pressure, 
and heavy load. The failure criterion was established at 1 in. of permanent 
surface deformation. Data collected included temperature, permanent 
deformation, asphalt strains, pavement stiffness, and soil stresses and 
deflections.  
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2 Full-Scale Evaluation Plan 

This chapter presents a general description of the test-section design and 
layout, materials, instrumentation, and traffic conditions. A more detailed 
description of most of these aspects of the study can be found in Rushing 
et al. (2013).  

2.1 Test-section design and layout 

The test section was constructed in an open-ended aircraft hangar test 
facility (Hangar 4) at ERDC. The test section was designed within the 
limits of the DOD’s minimum thickness criteria for flexible pavements in 
medium-load Air Force airfields detailed in UFC 3-260-02. It consisted of 
four test items as shown in Figure 2. The only difference between the test 
items was the WMA additive used in the asphalt mix. Three different types 
of WMA technologies were used: chemical additive, organic additive, and 
foaming process. A dense-graded HMA mix was used in the control test 
item. The same asphalt mix design was used for the four mixes. 

Figure 2. Test-section layout. 

 

The pavement structure was designed to minimize deformation in the 
unbound layers so that failure would occur predominantly in the surface 
layer. Pavement Transportation Computer Aided Structural Evaluation 
(PCASE) software and Pavement Engineering Utility (PSEVEN) were used 
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to determine the optimum pavement structural design in accordance with 
DOD airfield design criteria (UFC 3-260-02). Locally available materials 
that would withstand over 100,000 passes of an F-15E aircraft fully loaded 
to approximately 35,000-lb load and 325-psi tire pressure without failure 
were used. Failure for this analysis was defined as 1 in. of rutting mainly 
attributed to the subgrade or subbase layers. The resulting pavement 
structure consisted of 4 in. of asphalt concrete over 10 in. of base course 
with a California bearing ratio (CBR) of 100, over a 10-in.-thick subbase 
course with a CBR of 30. The subgrade had an assumed CBR of 15. Each 
test item was designed using the same pavement structure (Figure 3). The 
asphalt concrete layer was varied to include three WMAs and one HMA 
surface. 

Figure 3. Test-section pavement structure.  

 

2.2 Materials 

2.2.1 Foundation soil materials 

The subgrade consisted of a clay material classified as high-plasticity clay 
(CH) by the Unified Soil Classification System (USCS) as described in ASTM 
D 2487. This material was procured from a local source in Vicksburg, 
Mississippi, and was selected for its ability to retain its moisture condition 
and strength characteristics over long periods of time. The subbase material 
was a clay-gravel mixture also procured from a local source in Vicksburg, 
and its USCS classification was clayey sand (SC) with gravel. The base 
course was a limestone material classified as gravel with silt and sand 
(GP-GM). This material was stockpiled at a local facility, but it was 
previously transported by barge to Vicksburg from its source in western 
Kentucky. A summary of the as-constructed soil properties from the 
foundation layers is given in Table 1. 
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Table 1. Foundation layer soil properties as constructed. 

Test  
Item 

Subgrade Subbase Base 

Avg.  
CBR  
(%) 

Drive Cylinder 

Avg.  
CBR  
(%) 

Sand Cone 

Avg.  
CBR  
(%) 

Sand Cone 

Dry  
Density  
(pcf) 

Moisture  
Content  
(%) 

Dry  
Density  
(pcf) 

Moisture  
Content  
(%) 

Dry  
Density  
(pcf) 

Moisture  
Content  
(%) 

1 13.8 97.1 22.8 26.7 127.7 8.4 100.0 144.3 2.7 

2 15.1 96.2 21.8 34.6 130.8 7.5 106.1 139.7 2.5 

3 14.9 96.1 22.2 35.1 131.6 7.1 103.6 133.5 2.2 

4 14.9 99.9 20.5 33.3 129.4 6.9 103.1 138.7 2.5 

Average 14.7 97.3 21.8 32.4 129.9 7.4 103.2 139.1 2.5 

Target  15.0 103.0 22.0 30.0 130.0 8.0 100.0 141.0-145.0 3.0-5.0 

2.2.2 Asphalt concrete 

2.2.2.1 Binder and WMA additives:  

The base binder used for this project was an unmodified PG 67-22. A neat 
asphalt binder was used instead of a polymer-modified binder to avoid any 
interaction between WMA technologies and other binder modifiers. The 
EvothermTM 3G additive was pre-blended with the base binder prior to 
use. The Sasobit® additive was fed into the asphalt drum mixer near the 
same location as the binder. The Foamed Asphalt used water injection 
near the binder feed line. WMA product descriptions and dosage rates are 
provided in Table 2. 

Table 2. WMA products description. 

Product Name  WMA Category  Dosage Ratea (%)  

Sasobit®  organic wax  1.5  

EvothermTM 3G  chemical additive  0.5  

Foamed Asphalt (water)  foam process  2.0  

a Dosage rate by percentage of binder weight. 

2.2.2.2 Aggregate 

An aggregate blend was designed to meet job mix formula (JMF) gradation 
requirements for a 0.5 in. (12.5 mm) nominal maximum aggregate size 
mixture according to UFGS 32- 12- 15.16. The blend consisted of 45% 
crushed gravel, 40% limestone, and 15% natural sand (maximum allowed 
by specification). The aggregate sources and blend were selected based on 
materials available for plant production. The fine aggregate angularity 
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(FAA) value for this blend of 42.6% was below the specified minimum 
requirement of 45.0% and could indicate increased propensity for rutting. 
Gradation and aggregate properties for the JMF aggregate blend are 
provided in Figure 4.  

Figure 4. Gradation of aggregate for asphalt mixtures. 

 

2.2.2.3 Mix design 

Asphalt mixtures were designed to 75 gyrations in the Superpave gyratory 
compactor (SGC) according to UFGS 32-12-15.16 requirements.  

2.2.2.4 In-situ volumetric properties 

Cores were extracted from the asphalt concrete pavement sections to 
determine the in-situ volumetric properties. Table 3 provides average 
values for 10 cores taken from each test item. The theoretical maximum 
specific gravity, Gmm, and percent binder, Pb, values were determined from 
quality assurance (QA) laboratory testing. The Gmb was measured 
according to AASHTO T166. 

The compacted air voids percentage was close to the target of 4.0 for the 
HMA, Sasobit®, and EvothermTM 3G test items. The Foamed Asphalt item 
had the highest air void content. This item was also compacted at the 
lowest temperature. During construction, it did not achieve density as 
quickly as the other items, which resulted in higher air voids. The higher 
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voids in mineral aggregate (VMA) and lower voids filled with asphalt 
(VFA) values result from lower density. Overall, the total thickness of the 
items was close to the target value of 4.0 in. 

Table 3. Volumetric properties of asphalt cores. 

Mix ID Gmm Gmb Pb Va VMA VFA Thickness (in.) 

Target --- --- --- 4.0 ≥ 14.0 65-78 4.0 

HMA 2.454 2.360 5.3 3.8 14.3 73 4.2 ± 0.16 

Foamed Asphalt 2.471 2.322 4.8 6.0 15.3 61 4.1 ± 0.31 

Sasobit® 2.460 2.351 4.9 4.4 14.3 69 4.2 ± 0.23 

EvothermTM 3G 2.463 2.345 4.9 4.8 14.5 67 4.2 ± 0.26 

2.3 Instrumentation 

During construction, each test item was instrumented with earth pressure 
cells (EPCs), single-depth deflectometers (SDDs), asphalt strain gauges 
(ASGs), and surface strain gauges (SSGs) to measure the pavement 
response to simulated aircraft loading. Moisture sensors were also installed 
in the subgrade of all four test items to monitor moisture changes through-
out the test period. Figure 5 shows the instrumentation layout. 

The EPCs and SDDs were installed in the subgrade, subbase and base layers 
to measure the soil stresses and deformations, respectively, generated in the 
different sub-layers underneath the asphalt surface during traffic. EPCs 
were installed 2 in. into each sub-layer, and the SDDs were installed 4 in. 
into each sub-layer. The ASGs were installed on top of the limestone base to 
measure deformations at the bottom of the asphalt layer. Two ASGs were 
installed at each location: one oriented in the longitudinal (traffic) direction 
and the second one oriented transverse to the traffic direction. The ASGs 
were installed 6 in. apart (center-to-center spacing), as shown in Figure 7, 
using the manufacturer’s installation instructions. To protect each gauge 
during paving, asphalt mix was screened over a #4 sieve, and the fine 
portion was used to create a thin, compacted dome over the gauge. The 
SSGs were installed at the asphalt surface at the same locations where the 
ASGs were installed in each test item. Two SSGs were installed 6 in. apart 
(center-to-center spacing) at each location: one oriented in the longitudinal 
(traffic) direction and the second one oriented transverse to the traffic 
direction (Figure 7). The SSGs were adhered to the pavement using a rapid-
curing general purpose adhesive (epoxy) following the manufacturer’s 
installation instructions. Protective coating was applied to the SSGs and the 
lead wires to protect them from traffic abrasion (Figure 8). 
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Figure 5. Instrumentation layout. 
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Figure 6. Typical installation of ASGs at the base surface. 

 

Figure 7. Typical installation of SSGs.  
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Figure 8. Applying protective coating to SSGs and lead wires.  

 

I-buttons (Figure 9) were installed outside the traffic zone on both the 
surface of and within the asphalt layer to continuously measure pavement 
internal temperature. They were installed at three locations (north, center, 
and south), and at three different depths within the asphalt layer (near the 
surface or top, mid-depth, and at the bottom). I-buttons were also used to 
monitor the air temperature inside the HVS chamber (one on the north 
end and one on the south end), and the outside temperature. Figure 10 
shows a typical I-button installation layout. 

Figure 9. I-button used to record temperature readings 
(www.maturitycentral.com). 
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Figure 10. Typical I-button installation layout. 

 

2.4 Test conditions 

The main focus of this study was to evaluate failure of the asphalt layer to 
compare the field rutting performance of three different WMA technologies 
to conventional HMA. Therefore, a combination of worst-case loading 
conditions and high pavement temperature was applied to the flexible 
pavement under study to induce the failure in the asphalt layer. 

Generally speaking, moderately loaded aircraft with high tire pressures 
and relatively small footprints (e.g., fighter aircraft) produce higher 
stresses near the top of a pavement structure, while heavily loaded aircraft 
with moderate tire pressures and relatively larger footprints (e.g., cargo 
aircraft) produce higher stresses in the lower layers of the structure. 
Hence, a high-tire-pressure aircraft is more likely to cause more damage as 
a result of shear stress in materials near the pavement surface. The F-15E 
military fighter jet aircraft was selected for accelerated traffic simulation in 
this study. This aircraft is considered the most damaging aircraft in the 
USAF inventory to pavement surfaces because of its small footprint and 
high tire pressure of 325-psi. This type of loading results in very high 
stresses near the pavement surface, producing an aggressively damaging 
effect on the asphalt layer.  

For a given properly proportioned asphalt mixture and properly constructed 
pavement, temperature is arguably the most important factor contributing 
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to rutting performance. The higher the temperature a flexible pavement is 
exposed to, the higher its propensity for rutting. Where testing temperature 
control is practical, using a single test temperature is efficient, as it greatly 
reduces testing time as well as the analytical efforts in the mixture 
evaluation process. The presence of a single test temperature at which 
asphalt mixtures can be evaluated has been termed effective temperature by 
Witczak (1992). Effective temperature has been defined as a single test 
temperature at which an amount of a given type of distress, within a given 
pavement system, would be equivalent to that which would occur from the 
seasonal temperature fluctuation throughout the annual temperature cycle 
(NCHRP 704, 2011). For this study, a test temperature of 109 ºF was 
selected as it is the Witczak effective test temperature for Jackson, 
Mississippi. 
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3 Full-Scale Simulated Traffic and 
Evaluation Procedures 

3.1 Traffic operations 

Each test item was trafficked in a bi-directional, normally distributed traffic 
pattern using a heavy vehicle simulator (HVS-A model). The HVS-A is a 
fully automated machine that simulates accelerated aircraft traffic on 
pavement test sections while allowing control of the pavement temperature 
with an integrated climate control system (Figure 11).  

Figure 11. Overview and inside view of the HVS-A. 

 

Trafficked Area 

Insulation Panels 

Wheel Carriage 

Wander Width 

Insulation Panels 



ERDC/GSL TR-14-3 16 

 

The wheel carriage travels forward and backward at a speed of approxi-
mately 5 mph over a longitudinal distance of 40 ft. The HVS-A, one of only 
eight in the world, is the largest of its kind with the ability to traffic airfield 
pavements with high aircraft loads. All test items were trafficked with a 
single F-15E wheel loaded to approximately 35,500 lb with 325-psi tire 
pressure, which is within the normal range of loads that are expected in Air 
Force medium-load airfields. The wheel load for an F-15E at maximum 
take-off weight is 35,235 lb. Prior to testing, an externally calibrated aircraft 
scale was used to calibrate the hydraulically actuated wheel loading system 
of the HVS-A. During testing, the wheel load was monitored by the HVS-A's 
onboard control system. Prior to each day's testing, the tire inflation 
pressure was checked using a tire pressure gauge and adjusted if necessary. 
Figure 12 shows the loaded F-15E wheel. 

Figure 12. Loaded F 15E wheel. 

 

A pass is defined in this study as one movement of the aircraft wheel down 
the length of the test section, and a coverage is defined as one application 
of the aircraft wheel over every single point in the central portion of the 
traffic lane. A normally distributed traffic wander pattern was used for this 
testing by programming a defined pass pattern into the HVS-A control 
system. The lateral wander width for this traffic pattern was 32 in., as seen 
in Figure 11. Each complete traffic pattern consisted of 46 passes at which 
point the wheel carriage had returned to its original position. The 
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minimum pass to coverage ratio for the F-15E traffic pattern used in this 
study was 2.6. Figure 13 shows the distribution of wheel loads used on the 
test section. The offset index represents 1 in. distance between the loaded 
wheel for each pass. Each bar represents the total number of passes 
applied over each offset distance after one full pattern was completed.  

Figure 13. HVS-A traffic pattern used for the single wheel F-15E. 

 

The configuration of the HVS-A only allowed for traffic over one test item 
at a time. Traffic operations started on November 15, 2012, and concluded 
on February 12, 2013. The test items were trafficked in the order listed in 
Table 4. 

Table 4. Traffic operations sequence. 

Test Period Test Item 
Traffic Application 
Period (days) 

Total Passes 
Applied 

11/15/12 – 11/29/12 Item 4: EvothermTM 3G 9 2221 

12/10/12 – 12/27/12 Item 3: Sasobit® 6 2590 

01/14/13 – 01/22/13 Item 2: Foamed Asphalt 7 7012 

02/05/13 – 02/12/13 Item 1: HMA (control) 6 3326 

For this study, permanent deformation was defined as change in elevation 
of the pavement surface relative to its initial position. Depth of the rut 
valley was considered, but uplift on the edges of the rutted areas was not. 
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Uplift was measured as part of the survey process, but was not considered 
as part of the failure criterion for the purposes of this study. The DOD 
failure criterion for flexible pavements is typically based upon 1 in. of 
rutting. For this study the failure criterion was 1 in. of permanent 
deformation; however, to ensure that the failure criterion was exceeded, 
all four test items were trafficked until the average permanent deformation 
was approximately 1.2 in. 

Testing was conducted under controlled temperatures to keep consistency 
in the evaluation and allow for reasonable comparisons. In some cases 
however, outside weather conditions changes affected the performance of 
the HVS-A heating system so that it was not able to maintain the desired 
temperature throughout the testing period. In winter, the inside tempera-
ture decreased as the outside temperature decreased. In addition, there was 
an internal temperature difference from one end to the other. 

3.2 Data collection 

The data collected at different traffic intervals included surface permanent 
deformation measurements at the centerline and cross sections using a 
robotic total station; surface profile measurements using the HVS laser 
profiler; rut depth measurements; pavement and air temperature 
measurements; pavement deflection measurements from falling weight 
deflectometer (FWD) tests; and instrumentation response measurements. 
All data were collected at the stations shown in Figure 14 for each data 
collection traffic interval.  

Figure 14. Data collection layout for each test item. 
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Instrumentation readings were collected to measure the pavement 
response under static and dynamic loading. Baseline total station data, 
laser profile data, and rut depths were collected prior to trafficking at 
ambient temperature (pre-heat). Baseline instrumentation response and 
FWD data were collected at room temperature and also after the pavement 
was heated to the desired test temperature (post-heat) for comparison. 
The pavement and air temperature were monitored continuously 
throughout the tests. Table 5 lists all the measurements collected.  

Table 5. Data collection.  

Traffic Interval 
Total 
Station 

Rut 
Depth 

HVS  
Profiler FWD 

Pavement Response (Instrumentation) 

Static  
Testa 

Dynamic  
Slow Roll Testb 

Dynamic 
Sweep Testc 

Pre-heat X X X X X X  

Post-heat    X X X  

During traffic X X X   X X 

Post-traffic X X X X X X  

a Loaded wheel was dropped at the instruments locations and held for a few seconds. 

b Loaded wheel was rolled twice over the centerline at 5 mph at each traffic interval. 
b Instrumentation data were recorded during the first 23 passes (1 sweep) of each traffic interval. 

3.2.1 Temperature monitoring 

I-buttons were set up to start collecting data before heat was to be applied 
to the pavement. Temperatures were recorded continuously to measure 
the full temperature range to which the pavement was subjected during 
the testing period. Data were downloaded periodically from all three I-
buttons at each location to monitor the temperatures until the heat was 
ceased and testing was completed. Prior to the application of traffic, data 
were downloaded to ensure the high temperature condition was consistent 
throughout the asphalt pavement layer before the application of any 
traffic. During traffic, data were downloaded to monitor any changes in the 
pavement temperature. After traffic, the full set of data was downloaded 
for further analysis.  

3.2.2 Centerline and cross-section profiles 

Centerline and cross-section profiles were collected with a robotic total 
station (Figure 15) to aid in the measurement of the surface elevation 
changes after selected passes of the single wheel F-15E load cart. Measure-
ments on the centerline were collected at 1-ft intervals, while the cross-
section profile measurements were collected at the intervals shown in 
Figure 16.  
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Figure 15. Cross-section readings with robotic total station. 

 

Figure 16. Data collection points for each 
cross section. 
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The resulting surface profiles were used to establish the permanent surface 
deformation of the centerline and across all stations (10, 15, 20, 25, 30, 35, 
and 40) as trafficking progressed. Rut depth measurements were also 
collected across all stations (10, 15, 20, 25, 30, 35, and 40) at the center 
point, 1 ft west of the center point, and 1 ft east of the center point as a 
quick measure of the rutting performance at each pass level. Surface scans 
were also performed using the total station to map the entire test area 
surface of each test item before and after trafficking. These data were 
collected as a backup and are not presented in this report.  

3.2.3 Falling weight deflectometer (FWD) 

The FWD is a nondestructive, impact load device that applies a single-
impulse transient load of approximately 25- to 30-msec duration. With this 
trailer-mounted device, a dynamic force is applied to the pavement surface 
by dropping a weight onto a set of rubber cushions. This results in an 
impulse loading on an underlying 11.8-in.-diameter circular plate in contact 
with the pavement. The applied force and the pavement deflections are 
measured with load cells and velocity transducers, respectively. The drop 
height of the weights can be varied from 0 to 15.7 in. to produce a force from 
1,500 to 27,000 lb. The system is controlled with a laptop computer that 
also records the output data. Deflections were recorded at the center of the 
load plate (D1) and at offset distances of 12, 24, 36, 48, 60, and 72 in. (D2 
through D7) from the center of the load plate. Pavement deflection 
measurements were recorded at force levels of approximately 25,000 lb.  

The FWD is normally trailer-mounted on a vehicle; however, for this 
project, the FWD was manually moved under the HVS-A and the pavement 
was tested at Stations 10, 15, 20, 25, 30, 35, and 40 before trafficking at both 
ambient and at high temperature conditions, and later after trafficking at 
the high temperature condition. Figure 17 shows FWD testing on Item 4. 

3.2.4 Instrumentation response 

The instrumentation data were collected under dynamic loading over the 
center of each gauge or stack of gauges. The loaded F-15E wheel was slowly 
rolled down and back over the centerline, which is where all the instrumen-
tation gauges were located at each station. This test was called the dynamic 
slow roll test. At the start of all traffic intervals, the instrumentation data 
were recorded for 23 passes (1 sweep pattern) to show the response as the 
wheel moved toward and away from each gauge. This test was called the 
dynamic sweep test.  
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Figure 17. FWD testing on Item 4. 

 

3.3 Forensic investigation 

After trafficking of the test section was complete, 3-ft-wide by 
approximately 3-ft-deep trenches were excavated on each test item as 
indicated in Figure 18. These locations were selected to avoid trenching 
over the instrumentation and to get a good assessment of the pavement 
failure. The trenches on the north end of the test items were used to assess 
the areas with the least rutting measured, and the trenches on the south 
end were used to assess the areas with the deepest rutting measured.  

All four test items were trenched 6 months after trafficking was completed. 
Each layer of the pavement structure was removed individually and 
assessed at the center of the rut and outside the traffic lane. CBR tests, 
nuclear density and moisture measurements, and oven moisture tests were 
completed at each location on each foundation layer. Furthermore, visual 
inspection and manual profile measurements were performed to aid in 
determining where failure occurred.  
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Figure 18. Trenching Layout. 
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4 Pavement Performance Results 

4.1 Temperature measurements 

The raw temperature data collected during the traffic tests on each test item 
are available in Appendix A. Average pavement temperatures were deter-
mined for the three locations where the I-buttons were installed: south (STA 
0+05), center (STA 0+25), and north (STA 0+45). These average tempera-
tures were calculated using only the data that were collected when traffic 
was applied to the pavement. Figure 19 presents the average temperatures 
at the three locations as measured at the top, mid-depth, and bottom of the 
asphalt layer on each test item. Average air temperatures measured at the 
north and south ends of the test items are also included in the figures for 
comparison.  

Figure 19. Average pavement temperatures as measured at the top, middle, and bottom of the asphalt 
layer during traffic. 
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The target pavement temperature for this study was 109 ºF, and it is 
indicated by a dashed line in the plots in Figure 19. An almost linear 
temperature gradient was observed in most cases, going from a higher 
temperature at the top of the asphalt layer to a lower temperature at the 
bottom. In some cases, the top and mid-depth temperatures were very 
similar. This was due to installation errors (i.e. I-buttons were installed at 
the same depth). The inside air temperature varied slightly from the north 
end to the south (the biggest difference was 3 ºF in Foamed Asphalt). This 
slight discrepancy was reflected in an average difference in pavement 
temperatures between the north and south ends of 5 ºF. 

The temperatures at the top, mid-depth, and bottom of the asphalt were 
combined to determine the average pavement temperature at each 
location. These average temperatures were compared to the temperatures 
that were measured at mid-depth of the asphalt layer, and they were very 
similar in most cases. The average pavement temperatures for the south, 
center, and north areas of the four test items are presented in Figure 20.  

Figure 20. Average pavement temperatures during traffic in three regions on each test item. 
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Table 6. I-buttons specific locations on each test item. 

Test Item South I-Buttons Center I-Buttons North I-Buttons 

HMA STA 0+3.5 STA 0+27 STA 0+46 

Foamed STA 0+3.5 STA 0+27 STA 0+47 

Sasobit® STA 0+5 STA 0+26 STA 0+44 

EvothermTM 3G STA 0+5 STA 0+24 STA 0+45 

Figure 21. I-button layout in reference to the HVS heating system layout 
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heat through gaps between panels in the HVS chamber, and poor 
consistency of air distribution by the HVS heating system. Another reason 
could have been the pavement’s ability to absorb heat, but it is difficult to 
determine which pavement absorbed more heat due to these other 
variables. Certainly, having different pavement temperatures affected the 
rutting performance of the test items as is discussed later in this report.  

Figure 22. Typical surface temperatures as measured with infrared camera during testing.  

 

The average pavement temperature was calculated for each test item and 
plotted in Figure 23. In average, all test items were tested at temperatures 
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system had trouble maintaining the test temperature inside the chamber, 
while the outside conditions were cold. As the chamber was opened to 
collect data after each traffic interval, the pavement also experienced heat 
loss and the pavement temperature decreased. Not enough time was 
provided between traffic intervals for the pavement to recover the heat lost 
and reach the test temperature. This caused the pavement temperature to 
stay lower than the test temperature of the other items.  

Figure 23. Average pavement test temperatures of each test item. 

 

Figure 24. Average inside and outside air temperatures during traffic on each test item. 
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4.2 Surface distresses 

Generally, rutting and cracks were the surface distresses observed in all four 
test items. Rutting is a load-related distress caused by an accumulation of 
vertical compressions (Collop, 1995). The presence of rutting indicates that 
a permanent deformation occurred in one or more of the layers of the 
pavement structure. This deformation occurs as a result of densification, 
shear movement or a combination of both. Figure 25 shows the rutting on 
the HMA after 3,326 passes. This rutting profile was typical in all four 
items. All items experienced pavement upheaval along the sides of the rut 
and at the ends of the traffic lane. Figure 26 shows the pavement upheaval 
at STA 0+15 of the Foamed Asphalt item. Upheaval typically indicates that 
there is shear movement, or an outward and upward movement of material, 
somewhere within the pavement structure. The pavement uplifts at the ends 
of the traffic lane were generated as the wheel stopped to change directions 
during traffic. A depression was observed at STA 0+30 in all four items after 
the first few passes of the F-15E wheel. This distress was attributed to the 
presence of a SDD, which was installed on top of the base course at that 
station. Insufficient compaction during gauge installation combined with 
the high stresses caused by the oversized plate of the SDD under loading 
could have caused the early base failure at that location. As shown in 
Figure 27, the absence of pavement uplift along the sides of the rut at that 
location indicated that failure was taking place in the sub-layers and not in 
the asphalt layer. Surface cracks were also observed at this location in all 
items as shown in Figure 28. Surface cracks were also observed around the 
SSGs in all four test items as shown in Figure 29. The cracks were observed 
on the surface of the rapid set epoxy that was used to install the gauges.  

Figure 25. HMA rutting after 3,326 passes. 
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Figure 26. Foamed Asphalt upheaval west side of the rut (@ STA 0+15) after 5,906 passes. 

 

Figure 27. EvothermTM 3G rutting at STA 0+30 due to localized base failure after 741 passes.  

 



ERDC/GSL TR-14-3 31 

 

Figure 28. Typical cracks in asphalt surface at STA 0+30. 

 

Figure 29. Typical cracks in asphalt surface at strain gauge location. 

 

4.3 Permanent deformation 

Figures 30-33 present the permanent deformation centerline profiles for all 
four test items. The data were normalized to zero starting at 0 passes. The 
failure criterion of 1 in. permanent deformation is marked with a horizontal 
dashed line. The average pavement temperatures are presented in a 
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secondary axis for reference. Greater permanent deformations were 
observed at the stations where instrumentation was located. Also, in all four 
items, a difference in permanent deformation between the south and north 
ends of the traffic lane was observed. The area between stations 0+10 and 
0+20 had greater permanent deformation than the rest of the traffic lane in 
most of the test items. Specifically, STA 0+15 had the greatest permanent 
deformation in all four test items, and it was attributed to the greater 
amount of heat that was coming out from the vent that was located close to 
that location, as it was discussed in the first section of this chapter. As traffic 
progressed, the heated pavement at that location deformed more quickly 
than the rest of the traffic lane, with the exception of STA 0+30. At STA 
0+30, the pavement experienced large deformations in all four test items 
but, as discussed in the previous section, this failure was attributed to 
inadequate compaction of the base material during instrumentation 
installation. Therefore, the data from this station were treated as outliers 
and were not used in the calculation of average deformations. Other areas 
where excessive deformations were observed include the areas near STA 
0+05 and STA 0+45. These were the areas where the wheel stopped to 
change directions during traffic. These areas were also treated as outliers.  

Figure 30. HMA centerline profiles and average pavement temperature. 
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Figure 31. Foamed Asphalt centerline profiles and average pavement temperature. 

 

Figure 32. Sasobit® centerline profiles and average pavement temperature. 
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Figure 33. EvothermTM 3G centerline profiles and average pavement temperature. 
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Figure 34. EvothermTM 3G cross-section profiles. 
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Figure 35. ISM values for all four test items.  
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escaped more quickly; this caused the differences in temperature and, 
thus, the differences in stiffness. Considering all the factors that affect the 
variability of the FWD test, the differences were minimal.  

4.5 Pavement response 

This section discusses the data that were collected with the instrumentation 
that was installed in the foundation layers. Even though the main focus of 
this report is on the performance of the asphalt layer, it is important to 
document the response of the foundation layers to show if there was any 
movement on the unbound layers during trafficking.  

It is important to note that during trafficking some of the instruments 
were not able to record data due to problems during construction and 
installation or because their maximum capacity was reached during 
trafficking. During construction, some of the asphalt strain gauges were 
damaged by the paver machine when it drove over the sensors and no data 
could be collected from them during testing. During traffic, some of the 
surface strain gauges were damaged by the abrasive action of traffic 
loading, and some of them reached their maximum capacity very early 
during the test. Also during traffic, some of the SDDs started recording 
erroneous readings at irregular intervals. The source of error is unknown; 
however, it is anticipated that this malfunction was related to installation 
issues or to the SDDs themselves. 

The following sections summarize the pavement response measurements 
from the dynamic slow roll tests and the dynamic sweep tests that were 
conducted at each traffic interval. Some examples of typical raw 
instrumentation data are available in Appendix D.  

4.5.1 Dynamic Slow Roll Test 

Table 7 provides a summary of the maximum pressures measured at the 
subgrade, subbase, and base layers in all four test items during dynamic 
slow roll tests. Figures 36-39 present the maximum pressures that were 
measured with the EPCs during the dynamic slow roll tests at each traffic 
interval. These plots include the maximum pressures measured when slow 
roll tests were conducted before heat was applied to the pavement (Pre-
Heat).  
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In general, the data show minimal changes in pressure with increasing 
passes. This is a good indication that there was no movement or densifica-
tion of the unbound layers during trafficking, which was one of the main 
objectives for the design of this pavement structure. A noticeable increase in 
pressure was observed when heat was applied to the test items. When the 
asphalt pavement layer is cold, it is stiff and spreads the load more 
efficiently, reducing the pressure transmitted to the unbound layers. When 
the asphalt layer heats up, it becomes more flexible and transmits more 
pressure to the sub-layers. There was a decrease in pressure observed after 
46 passes in the HMA, but the pressure increased again and stayed 
consistent for the rest of the trafficking. This could have been related to test 
errors. In the case of Sasobit®, the two EPCs in the base layer showed a 
consistent difference in pressure at all traffic intervals as shown in 
Figure 40. This difference in pressure between two EPCs that were located 
at the same depth could have been related to the horizontal positioning of 
the instruments in relation to the traffic centerline and also to pavement 
temperature effects on the pressure measurements. Figure 41 shows the 
maximum pressure distribution with depth for all four items from the slow 
roll test data. This plot shows that the pressure applied by the F-15E wheel 
to the asphalt surface (325 psi) was well distributed through the base and 
subbase layers, and, thus, the effect on the subgrade was minimal. The 
pressure was reduced to approximately 15% at the bottom of the asphalt 
layer, to 60% at the bottom of the base, and 20% at the bottom of the 
subbase. The subgrade only received 5% of the applied surface pressure. 
This shows the efficiency of this pavement structure design in withstanding 
the heavy traffic loads for which it was designed.  

Table 7. Maximum soil pressures during dynamic slow roll test. 

Test Item 

Subgrade Max.  
Pressure (psi) 
(26 in. deep) 

Subbase Max.  
Pressure (psi) 
(16 in. deep) 

Base Max  
Pressure (psi)  
(6 in. deep) 

Avg. Surface  
Temp. (°F) 

HMA 13.3 52.8 265.1 106.7 

Foamed Asphalt 11.8 66.3 291.6 103.9 

Sasobit® 10.9 92.2 293.4 107.7 

EvothermTM 3G 14.8 93.1 257.9 106.3 
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Figure 36. HMA maximum pressure measured at the base, subbase and subgrade during 
slow roll test at each pass level. 

 

Figure 37. Foamed Asphalt maximum pressure measured at the base, subbase and subgrade 
during slow roll test at each pass level. 
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Figure 38. Sasobit® maximum pressure measured at the base, subbase and subgrade during 
slow roll test at each pass level. 

 

Figure 39. EvothermTM 3G maximum pressure measured at the base, subbase and subgrade 
during slow roll test at each pass level. 
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Figure 40. Pressure difference between EP5 and EP6 at the top of the base in Sasobit®. 

 

Figure 41. Maximum pressure distribution from dynamic slow roll test data.  
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A summary of the maximum deflections measured at each sublayer with the 
SDDs during dynamic slow roll tests is presented in Table 8. The maximum 
deflections measured during the dynamic slow roll test at each pass level on 
each test item are presented in Figures 42-45. Some of the SDDs did not 
record any measurements during testing, and some of them failed during 
the test. Multiple factors affected the proper functioning of the SDDs. For 
example, during installation of the SDDs at the base course, the soil that 
was placed underneath the plate to level it and the backfill soil on top of the 
sensor could have been poorly compacted. This caused the large early 
deformations observed on the asphalt pavement at those locations in all 
four test items during traffic, as previously discussed. The deflection 
measured by the SDDs at the base course included the deformation from 
the poorly compacted fill material. Therefore, the magnitudes of the 
deflections were not considered to represent movement of the unbound 
layers. However, the deflection trend lines indicate minimal or no move-
ment of the subbase and subgrade layers in all test items where data were 
recorded.  

Table 8. Maximum deflections measured with the SDDs during dynamic slow roll tests. 

Test Item 

Maximum Deflection (in.) Avg. Surface Temp.  
(°F) Subgrade Subbase Base 

HMA 0.04 0.07 0.16a 106.7 

Foamed Asphalt 0.05 ___b 0.24c 103.9 

Sasobit® ___b 0.04 0.22c 107.7 

EvothermTM 3G ___b ___b 0.34 106.3 

a Instrument failed after the third traffic interval was applied.  
b Instrument did not record data during the test. 
c Instrument failed before trafficking was completed. 
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Figure 42. HMA maximum deflection measured at the base, subbase and subgrade during 
dynamic slow roll test at each pass level.  

 

Figure 43. Foamed Asphalt maximum deflection measured at the base, subbase and 
subgrade during dynamic slow roll test at each pass level.  
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Figure 44. Sasobit® maximum deflection measured at the base, subbase and subgrade 
during dynamic slow roll test at each pass level.  

 

Figure 45. EvothermTM 3G maximum deflection measured at the base, subbase and subgrade 
during dynamic slow roll test at each pass level.  
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4.5.2 Dynamic sweep test 

Table 9 provides a summary of the maximum pressures measured at the 
subgrade, subbase, and base layers in all four test items during the 
dynamic sweep test. Figures 46-49 present the maximum pressures that 
were measured with the EPCs during the dynamic sweep tests at each 
traffic interval. These data also show minimal changes in pressure with 
number of passes. In general, the maximum pressures measured during 
the dynamic sweep test were very similar to those measured during the 
dynamic slow roll test. The highest pressure measured in the subbase was 
on EvothermTM 3G, and this item had the lowest pressure measured at the 
base. Sasobit® had the highest pressures measured at the base. The 
pressures measured in the subgrade were similar in all four items.  

Table 9. Maximum soil pressures during dynamic sweep test. 

Test Item 

Subgrade Max.  
Pressure (psi) 
(26 in. deep) 

Subbase Max.  
Pressure (psi) 
(16 in. deep) 

Base Max  
Pressure (psi)  
(6 in. deep) 

Avg. Surface  
Temp. (°F) 

HMA 13.5 52.3 282.6 106.7 

Foamed Asphalt 12.2 62.7 283.3 103.9 

Sasobit® 11.8 90.9 293.2 107.7 

EvothermTM 3G 14.6 93.3 262.8 106.3 

Figure 46. HMA maximum pressure measured at the base, subbase and subgrade during the 
first 23 passes of each data collection interval.  
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Figure 47. Foamed Asphalt maximum pressure measured at the base, subbase and subgrade 
during the first 23 passes of each data collection interval.  

 

Figure 48. Sasobit® maximum pressure measured at the base, subbase and subgrade during 
the first 23 passes of each data collection interval. 
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Figure 49. EvothermTM 3G maximum pressure measured at the base, subbase and subgrade 
during the first 23 passes of each data collection interval. 
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Figure 50. Pressure difference between EP5 and EP6 at the top of the base in Sasobit®. 

 

Figure 51. Maximum pressure distribution from dynamic sweep test data.  
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some of the SDDs did not record any data during testing, and some of 
them failed during the test. Deflection behavior under the dynamic sweep 
test was very similar to that observed during dynamic slow roll test, 
showing negligible change in deflection with traffic on the sub-layers 
where measurements were recorded.  

Table 10. Maximum deflections measured with the SDDs during dynamic sweep tests. 

Test Item 

Maximum Deflection (in.) Avg. Surface Temp.  
(°F) Subgrade Subbase Base 

HMA 0.04 0.06 0.14a 106.7 

Foamed Asphalt 0.05 ___b 0.21c 103.9 

Sasobit® ___ b 0.04 0.20c 107.7 

EvothermTM 3G ___ b ___ b 0.29 106.3 

a Instrument failed after the second traffic interval applied.  
b Instrument did not record data during the test. 
c Instrument failed before trafficking was completed. 

Figure 52. HMA maximum deflection measured at the base, subbase and subgrade during 
dynamic sweep test at each pass level.  
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Figure 53. Foamed Asphalt maximum deflection measured at the base, subbase and 
subgrade during dynamic sweep test at each pass level.  

 

Figure 54. Sasobit® maximum deflection measured at the base, subbase and subgrade 
during dynamic sweep test at each pass level.  
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Figure 55. EvothermTM 3G maximum deflection measured at the base, subbase and subgrade 
during dynamic sweep test at each pass level.  
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4.6 Forensic evaluation 

A total of four trenches (each crossing two test items) were excavated on the 
test section six months after trafficking was completed. Two trenches per 
test item were used to analyze post traffic conditions: one at the south end 
(between stations 0+16 and 0+19), and one on the north end (between 
stations 0+36 and 0+39). Tables 11-12 list the post traffic field measure-
ments of CBR, moisture content and nuclear gauge dry density collected at 
the center of the trenches (stations 0+17.5 and 0+37.5). The changes in 
these soil properties were calculated by comparing post-traffic measure-
ments collected at STA 0+17.5 and 0+37.5 with after construction measure-
ments collected at STA 0+15 and 0+35, respectively. These changes are 
presented in Figure 56. A negative value represents a decrease in the 
corresponding soil property after traffic. In general, minimum densification 
was observed in all layers. The changes in density (mostly negative) can be 
attributed to the variability of the nuclear density gauge test. The moisture 
contents decreased with time, and the CBR’s increased mostly in the 
subbase layer. Since minimum densification was observed in any of the 
layers, the CBR increase was attributed to the change in moisture content. 
The subbase consisted of clay gravel that tends to gain strength quickly with 
small changes in moisture content (Rushing et al., 2013). Surprisingly, the 
moisture content of the subgrade decreased in Items 2 and 4; however, 
these changes did not affect the CBR. The moisture content and the CBR of 
the base layer were not affected by traffic operations or time, as no 
significant changes in these properties were observed.  
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Table 11. Post-test field measurements at STA 0+17.5. 

Item 
Foundation 
Layer 

Test 
Location 

Dry 
Density 
(lb/ft3) 

Moisture 
Content 
(%) CBR (%) 

Change 
in Dry 
Density 
(lb/ft3) 

Change in 
Moisture 
Content 
(%) 

Change in 
CBR (%) 

HMA Base Center 132.7 1.5 100 -7.6 -0.9 0.0 

Outside 132.7 1.6 100 -7.6 -0.8 0.0 

Subbase Center 123.9 4.7 100 1.2 -1.8 76.0 

Outside 123.9 4.7 100 1.2 -1.8 76.0 

Subgrade Center 95.6 22.4 21 -1.2 -2.1 8.0 

Outside 95.6 23.2 19 -1.2 -1.3 6.0 

Foamed Asphalt Base Center 140.9 2.1 97 3.1 0.0 -3.0 

Outside 140.2 2.7 100 2.3 0.6 0.0 

Subbase Center 118.4 5.9 91 -7.4 -0.8 55.0 

Outside 118.7 7.1 25 -7.1 0.4 -11.0 

Subgrade Center 94.9 21.9 21 -1.2 -0.2 5.0 

Outside 94.9 21.5 18 -1.2 -0.6 2.0 

Sasobit® Base Center 135.8 1.4 100 1.3 -0.6 0.0 

Outside 135.8 1 100 1.3 -1.0 0.0 

Subbase Center 120.5 3.2 95 -5.5 -2.4 60.0 

Outside 125.8 3.1 100 -0.2 -2.5 65.0 

Subgrade Center 90.6 22.6 19 -2.9 -1.0 3.0 

Outside 92.7 23.4 26 -0.8 -0.2 10.0 

EvothermTM 3G Base Center 136.4 1.4 100 1.0 -0.1 0.0 

Outside 136.9 1.7 100 1.5 0.2 0.0 

Subbase Center 128.7 3.6 92 4.1 -2.2 70.0 

Outside 118.1 4.6 68 -6.5 -1.2 46.0 

Subgrade Center 93.6 21.3 24 -1.3 -4.4 8.0 

Outside 89.9 22.8 21 -5.0 -2.9 5.0 

Notes: 

- Changes were calculated comparing post traffic measurements collected at STA 0+16 with after construction 
measurements collected at STA 0+15 on each test item. 

- A negative value represents a decrease in the corresponding soil property. 

- Dry densities were measured with nuclear density gauge per ASTM D 6938. 

- CBR and moisture content were measure through CBR field testing per ASTM D 4429. 



ERDC/GSL TR-14-3 54 

 

Table 12. Post-test field measurements at STA 0+37.5. 

Item 
Foundation 
Layer 

Test 
Location 

Dry 
Density 
(lb/ft3) 

Moisture 
Content 
(%) CBR (%) 

Change 
in Dry 
Density 
(lb/ft3) 

Change in 
Moisture 
Content 
(%) 

Change 
in CBR 
(%) 

HMA Base Center 139.4 0.9 100 3.3 -0.7 0.0 

Outside 139.4 1.2 100 3.3 -0.4 0.0 

Subbase Center 126.4 5 100 -0.2 -1.7 70.0 

Outside 126.4 4.4 100 -0.2 -2.3 70.0 

Subgrade Center 96.2 22.8 18 0.6 -0.5 4.0 

Outside 91.4 23.7 19 -4.2 0.4 5.0 

Foamed Asphalt Base Center 137.4 1.8 96 -1.8 -0.2 -4.0 

Outside 137.4 1.9 100 -1.8 -0.1 0.0 

Subbase Center 120.5 3.1 100 -3.8 -5.6 76.0 

Outside 128.3 5 100 4.0 -3.7 76.0 

Subgrade Center 91.5 21.4 22 -4.9 -3.4 6.0 

Outside 91.8 22.2 23 -4.6 -2.6 7.0 

Sasobit® Base Center 140.4  ___a  ___a 2.6  ___a  ___a 

Outside 136.2 1.4 92 -1.6 0.3 -8.0 

Subbase Center 126.6 4.1 82 -1.2 -1.6 38.0 

Outside 121 5.3 48 -6.8 -0.4 4.0 

Subgrade Center 90.2 21.9 22 -0.7 -0.9 7.0 

Outside 85.5 22.9 17 -5.4 0.1 2.0 

EvothermTM 3G Base Center 134.2 2 97 -5.9 0.3 -3.0 

Outside 138.6 2.2 100 -1.5 0.5 0.0 

Subbase Center 122.5 4.6 69 -4.9 -1.8 24.0 

Outside 121 5 53 -6.4 -1.4 8.0 

Subgrade Center 90.8 22.3 24 -4.7 -1.0 10.0 

Outside 89 23.4 11 -6.5 0.1 -3.0 

a Data is not available. 

Notes: 

- Changes were calculated comparing post traffic measurements collected at STA 0+16 with after construction measurements 
collected at STA 0+15 on each test item. 

- A negative value represents a decrease in the corresponding soil property. 
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Figure 56. Changes in soil properties after traffic. 
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stations. Thickness changes in the base layer were also minimal in all four 
items, with some minimum movement observed on Item 3 (Sasobit®) and 
Item 4 (EvothermTM 3G). Any movement observed on the base layer, 
especially between stations 0+15 and 0+20 could have been caused by the 
traffic loads being carried directly by the base once the asphalt layer failed 
completely.  

Table 13. Comparison of before and after traffic layer thicknesses. 

Item Layer 

Thickness at centerline (in.) 

South North 

Before  
Traffica 

After 
Trafficb Changec 

Before  
Traffica 

After  
Trafficb Changec 

HMA 

Subgrade 22.0 22.0 0.0 22.0 22.0 0.0 

Subbase 12.0 12.0 0.0 13.1 13.3 0.2 

Base 9.3 9.0 -0.3 9.2 8.7 -0.5 

AC 4.3 3.1 -1.2 4.2 4.1 -0.1 

Foam 

Subgrade 22.0 22.0 0.0 22.0 22.0 0.0 

Subbase 12.8 12.3 -0.4 12.1 12.4 0.2 

Base 9.2 9.2 0.0 9.8 10.0 0.2 

AC 4.3 3.1 -1.2 4.2 3.6 -0.7 

Sasobit® 

Subgrade 22.0 22.0 0.0 22.0 22.0 0.0 

Subbase 12.0 12.4 0.4 12.2 12.0 -0.2 

Base 9.6 8.0 -1.6 9.4 8.8 -0.7 

AC 4.4 4.2 -0.1 4.1 4.2 0.1 

Evotherm™3G 

Subgrade 22.0 22.0 0.0 22.0 22.0 0.0 

Subbase 11.7 12.2 0.5 12.8 13.3 0.6 

Base 10.8 9.9 -0.9 9.6 9.2 -0.5 

AC 4.2 3.3 -0.9 4.3 3.9 -0.4 

a Before traffic thicknesses were measured at STA 0+15 (south) and STA 0+35 (north).  
b After traffic thicknesses were measured at STA 0+17.5 (south) and STA 0+37.5 (north).  
 c Negative values represent decreases in thickness. 
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Figure 57. HMA south. 

 

Figure 58. HMA north. 
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Figure 59. Foamed Asphalt south. 

 

Figure 60. Foamed Asphalt north. 
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Figure 61. Sasobit® south. 

 

Figure 62. Sasobit® north. 
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Figure 63. EvothermTM 3G south. 

 

Figure 64. EvothermTM 3G north. 
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Pictures of the trenches showing the final conditions of the pavement 
structure in all four items at both locations (north and south) are shown in 
Figures 65 through 72. These pictures show no evidence of significant 
movement of the sub-layers after trafficking and confirm the observations 
from the instrumentation data.  

Figure 65. HMA South Trench (STA 0+16). 

 

Figure 66. HMA North Trench (STA 0+36). 
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Figure 67. Foamed Asphalt South Trench (STA 0+16). 

 

Figure 68. Foamed Asphalt North Trench (STA 0+36). 
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Figure 69. Sasobit® South Trench (STA 0+16). 

 

Figure 70. Sasobit® North Trench (STA 0+36). 
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Figure 71. EvothermTM 3G South Trench (STA 0+16). 

 

Figure 72. EvothermTM 3G North Trench (STA 0+36). 
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5 Analysis and Discussion of Results 

5.1 Rutting overview 

The average centerline permanent deformation of all four test items as 
trafficking progressed is shown in Figure 73. Failure was determined from 
Figure 73 by calculating the number of passes that caused 1 in. of average 
permanent deformation at the centerline (data at STA 0+30 were omitted 
from the average for reasons discussed in Chapter 4). Table 14 lists the 
failure data for the four test items. All test parameters were consistently 
similar in all four test items except the variation in pavement temperature 
discussed previously. The pavement test temperatures reported are the 
average of all nine I-buttons (three depths at three locations) during 
trafficking.  

Figure 73. Actual average permanent deformation overview. 
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Table 14. Actual failure data. 

Test Item 
Number of Passes to 
Failure 

Average Pavement 
Temperature (ºF) 

HMA (control) 2,900 106.7 

Foamed Asphalt 6,000 103.9 

Sasobit® 1,900 107.7 

EvothermTM3G 1,850 106.3 

Figure 73 shows the actual rutting performance of the four mixes evaluated, 
and it ranks them in the following order from best to worst performer: 1) 
Foamed Asphalt, 2) HMA, 3) Sasobit®, and 4) EvothermTM 3G. Foamed 
Asphalt doubled the performance of HMA and tripled the performance of 
the other two warm mixes. Foamed Asphalt was tested during the coldest 
ambient temperature period as compared to the other test items. This 
resulted in greater heat loss from the test section, as described previously, 
and consequently a lower average test temperature. This temperature 
difference is believed to have contributed to the greater rutting resistance of 
Foamed Asphalt as compared to the other warm-mixes and the HMA. 
Furthermore, previous laboratory results from Doyle et al. (2013) from 
rutting tests conducted on the same mixtures indicated that the rutting 
performance of Foamed Asphalt was generally lower than that of HMA. 

These results showed that most WMA mixtures had a slightly lower rutting 
resistance than the HMA mixture. It is important to note that the WMA 
mixtures were trafficked before the HMA (EvothermTM 3G was tested 22 
weeks after construction, Sasobit® 26, Foamed Asphalt 31 and HMA 34). 
In-place curing time could have an influence on the performance of WMA 
as compared to HMA. Doyle et al. (2013) evaluated the effects of curing 
time on rutting performance using specimens cored from the test sections 
at different times after construction and testing for laboratory rutting 
performance in the Asphalt Pavement Analyzer (APA). Results indicated 
that the performance of WMA was generally less than that of HMA. 
However, performance of all the mixtures improved with cure time after 
construction, and performance of WMA ultimately exceeded the initial 
performance of the HMA. This suggests that WMA initially may have a 
slightly greater propensity for rutting, but that allowing the pavement to 
cure adequately will alleviate the problem.  

It is also important to note that the asphalt mixture used in this study was 
intentionally selected to be more rut susceptible than the majority of airfield 
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mixtures. A mixture with a more rut resistant aggregate gradation and/or a 
polymer-modified binder would be more rut resistant overall and, thus any 
initial tenderness from using WMA would be less of a concern. 

5.2 Pavement structural performance 

The pavement structure in this study was conservatively designed for the 
purpose of isolating failure to the asphalt surface layer. Pavement structural 
response was evaluated during testing via FWD testing and instrumentation 
readings. FWD data in general showed no significant change in pavement 
stiffness throughout the test on any of the test items, considering all the 
factors that could have affected the variability of the test.  

Figure 74 shows a summary of the pavement response as measured with 
the earth pressure cells embedded in the different sub-layers. No change in 
pressure due to traffic was observed on any of the sub-layers in all four test 
items, which indicates that their structural integrity was not affected 
during traffic. After evaluating all the structural data, it was successfully 
demonstrated that the rutting performance of the four test items was not 
influenced by the structural capacity of the pavement sub-layers, but only 
by the capacity and properties of the surface asphalt mix. 

Figure 74. Average maximum pressures measured at each pavement unbound layer. 
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5.3 Forensics 

The data collected after traffic during the forensic evaluation support the 
data recorded by instrumentation. No significant changes in the soil 
properties that would have affected the rutting performance of the test 
items were observed after traffic. The subbase showed a big increase in 
CBR, but since the densification of that layer was minimal the change was 
attributed to the loss of moisture content with time, which is typical of that 
clay gravel soil. The changes in layer thickness were minimal or negligible.  

Considering all the data obtained on the behavior of the pavement 
structure including the data from the trenches, it was determined that the 
sub-layers behaved as designed. That is to say, no movement was observed 
on the sub-layers and the permanent deformation observed on the asphalt 
layer was not associated with any structural failure but only to asphalt 
mixture failure due to the harsh traffic conditions (high temperature and 
high tire pressure) to which it was exposed.  
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6 Grooving of WMA Surfaced Airfield 
Pavements  

An additional area of potential concern with use of WMA on the surface of 
airfield runway pavements is the material response to surface grooving, 
which is often required to provide high skid resistance for aircraft braking, 
particularly in wet conditions. If the asphalt binder in WMA is softer than 
that of comparable HMA due to reduced binder aging during production 
and placement, the WMA mixture may be more likely to experience groove 
closure or collapse, which could result in loss of desired skid resistance or 
chipping of aggregate from the groove edges, which could represent 
potential foreign object damage (FOD).  

Current specifications for military airfields (UFGS 32 01 26.71) and for 
civilian airfields (FAA AC 150/5320-12C) both require use of rectangular 
grooves of nominal dimensions 1/4 in. wide by 1/4 in. deep and spaced 1 
1/2 in. center to center. The nominal groove depth of 1/4 in. is allowed a 
tolerance of ±1/16 in. Grooves are oriented perpendicular to the direction 
of traffic. New asphalt pavements are required to cure for at least 30 days 
before surface grooving is performed.  

The dimensions of the grooves and the loads acting on them are shown in 
Figure 75. The vertical pressure will be approximately equal to the tire 
pressure; therefore, higher tire pressure aircraft will likely result in higher 
damage potential. The failure mechanism is somewhat analogous to a 
geotechnical slope failure where the slope angle (φ) will be dependent on 
temperature and asphalt mixture, aggregate, and binder properties. The 
shear failure plane will not be a direct path, but will instead occur in the 
asphalt mastic phase of asphalt mixture between individual aggregate 
particles. Horizontal shear stresses are also induced during aircraft braking. 

After HVS traffic operations were completed on the WMA test section, the 
untested areas of each test item were used to evaluate grooving of WMA. 
The main objectives of this part of the study were to assess any potential 
problems associated with grooving the surface of WMA airfield pavements 
and specifically to compare the performance of grooved WMA to that of 
grooved HMA. 
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Figure 75. Groove diagram and suggested failure mechanism (not to scale). 

 

6.1 Evaluation procedure 

For this experiment, factors of mixture type and curing temperature were 
considered. Four test items were evaluated: three WMA mixtures 
(Sasobit®, EvothermTM 3G, and Foamed Asphalt) and one HMA. The 
pavement areas that were not trafficked with the HVS-A were used for the 
evaluation.  

During the first 18 weeks after placement, all test items experienced air 
exposure, and the ambient temperatures of summer and fall (mid-June to 
November). However, since the test items were located in a covered test 
facility, there was no exposure to direct solar radiation (i.e., pavement was 
100% shaded) or to rain. After that and during the winter months of 
November to mid-February, each pavement test item was exposed to an 
elevated temperature of approximately 109oF for two to three weeks while 
accelerated traffic testing was conducted. After HVS traffic operations were 
completed, the HVS was removed from the test items, and the grooves were 
not cut until six months later.  

The areas that were not trafficked by the HVS-A, but that were still under 
the temperature chamber, were used for the grooving evaluation along with 
the pavement that was exposed to ambient conditions outside the HVS-A at 
all time. Therefore, for this grooving evaluation, two sample units were 
evaluated per test item: 1) pavement cured at ambient and at elevated 
temperatures and 2) pavement that was cured only at ambient temperature. 
Table 15 describes the experimental design and the eight factor-level 
treatment combinations tested. Figure 76 shows the physical layout of the 
experiment. 

Vert. Load + 
Horiz. Shear 

1 ½ in. 

h = ¼ in.

φ 

¼ in. ¼ in. 
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Table 15. Factor/level combinations for WMA grooving evaluation. 

Factor 1: Mix Type 

Factor 2: Curing Conditions 

Pavement Cured at Ambient and  
Elevated Temperature 

Pavement Cured only at Ambient  
Temperature 

HMA-Control HMA 1 HMA 2 

WMA-Foamed Asphalt Foam 1 Foam 2 

WMA-Sasobit® Sasobit 1 Sasobit 2 

WMA-EvothermTM 3G Evotherm 1 Evotherm 2 

Figure 76. Layout of WMA grooving evaluation experimental design (not to scale). 

 

The grooving evaluation was conducted six months after HVS-A traffic 
operations were completed, which is about one year after construction. This 
allowed conducting the evaluation during the summer when pavement 
temperatures are elevated. The grooves were cut individually on the asphalt 
surface using a concrete saw (MK Diamond Model MK-1614K Premium). 
The grooves were cut following the depth and spacing specifications on 
UFGS 32 01 26.71 and FAA AC 150/5320-12C. Once the grooves were cut, 
the surface was washed and swept to facilitate baseline measurements of 
groove depth and length. 

Simulated F-15 aircraft traffic was applied using the load cart shown in 
Figure 77. Traffic operations were completed in two applications (as shown 
in Figure 76): the Foamed Asphalt and EvothermTM 3G were trafficked first 
and then the HMA and Sasobit®. The traffic pattern was a block 
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distribution with a pass to coverage ratio of one, such that all areas received 
the same amount of traffic. Six lanes spaced at 8 in. were trafficked with ten 
passes each for a total of sixty (60) passes per coverage. Traffic was paused 
after each coverage interval for data collection. Traffic was continued until 
full groove closure was observed in more than 50% of a sample unit. Data 
collection for each item consisted of visual assessment, photographs of the 
pavement surface, and measurements of the length of damaged groove 
sections. The total length of grooves was measured initially. Then, the 
length of partial and full groove closure was measured after each coverage 
interval. Partial groove closure was defined as less than 1/8 in. closure, and 
full groove closure was defined as 1/8- to ¼ in. closure. Groove closure was 
evaluated by measuring the partial and full closures (expressed as a 
percentage of total groove length) using the following equation: 

Groove Closure (percent) = percent full closure + ½ (percent partial closure) (Eq.1) 

Figure 77. F-15 load cart. 

 

6.2 Results 

Figure 78 shows the typical initial conditions of the grooves before traffic 
was applied. Most of the grooves met the specifications for depth and 
spacing, even though they were cut individually and not using a grooving 
machine. However, some of the grooves where shallower than the depth 
tolerance; therefore, groove closure took longer or never occurred in those 
areas. Figure 79 shows a typical grooved area that experienced partial and 

Loaded F-15 wheel 
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full groove closure. In partial groove closure, the pavement still have some 
of the skid resistance initially provided by the grooves, but when the 
grooves are fully closed, that resistance is completely lost, which could 
cause problems, especially in runways where additional surface friction is 
essential. Another problem associated with groove failure could be foreign 
object damage (FOD) from loose aggregate and asphalt material that falls 
off the groove walls.  

Figure 78. Typical grooves before traffic.  

 

Figure 79. Typical partial groove closure and full groove closure. 

 

 
Full Groove Closure area 

 
 Partial Groove Closure Area 
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Groove closure results are shown in Figure 80. Pavement surface 
temperatures were monitored using a temperature laser camera at each 
pass level and are shown in Figure 81. Of all the mixtures under both curing 
conditions, Sasobit® was the top performer. Sasobit® performed better 
than HMA even when both were trafficked at the same time and at the same 
surface temperatures. The pavement surface temperatures were very 
consistent for HMA and Sasobit®. At the beginning trafficking, the pave-
ment surface temperatures for EvothermTM 3G and Foamed Asphalt were 
about 10oF lower than those of Sasobit® and HMA. Then, halfway through 
trafficking the temperature increased and that difference was about 5oF.  

Figure 80. Groove closure at each pass level. 

 
 a) Pavement cured at high temperature  b) Pavement cured at ambient temperature 

Figure 81. Pavement surface temperature at each pass level.  

 
 a) Pavement cured at high temperature  b) Pavement cured at ambient temperature 

Considering the sample units that were cured at a higher temperature, the 
performance of all WMA mixtures was better than HMA for the first 1,000 
passes. This shows that proper curing time reduces the potential for groove 
closure in both HMA and WMA. The sample units that were only cured at 
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ambient temperatures still show Sasobit® performing better than HMA, 
and EvothermTM 3G and Foamed Asphalt performed worse than HMA.  

In general, WMA performed as well as HMA under different pavement 
curing conditions. This indicates that pavement that is properly cured 
before grooving (30 days per UFGS 32 01 26.71 and FAA AC 150/5320-12C) 
should not exhibit groove closure problems, unless closure is caused by 
other mixture issues (i.e. mixture tenderness). The use of polymer-modified 
asphalts, a common practice on airfield pavements, should reduce the 
potential for groove closure, if any, of both HMA and WMA mixtures.  
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7 Conclusions and Recommendations 

7.1 Conclusions 

The following conclusions were drawn from the evaluation of the full-scale 
WMA test section under F-15 aircraft traffic at high temperatures: 

 Inconsistent test temperatures between test items and within each test 
item somewhat affected the results. Generally, temperatures were 
higher on the south end of the test items causing greater deformations 
on the pavement in those areas. Also, the test temperature varied 
between test items. However, general comparisons between the 
performance of WMA and HMA could still be made.  

 Rutting performance of WMA was slightly poorer than that of HMA. 
Considering that WMA may initially have slightly greater susceptibility 
to rutting than comparative HMA due to reduced aging of the binder 
during production, trafficking the HMA first may have led to different 
results.  

 The pavement structural behavior as measured by FWD testing and 
instrumentation readings showed consistent performance throughout 
the duration of the traffic operations. This demonstrated that the 
rutting performance of the four test items was not influenced by the 
structural capacity of the pavement sub-layers but only by the 
properties of the surface asphalt mix. 

 The forensic evaluation revealed that no measurable movement 
occurred in the sub-layers. This confirmed that the permanent 
deformation observed in the asphalt layer was not associated with any 
structural failure but only to asphalt mixture failure due to the harsh 
traffic conditions to which it was exposed.  

 From the grooving evaluation, WMA performed as well as HMA under 
different pavement curing conditions. This indicates that WMA 
pavement that is properly cured before grooving should not exhibit 
groove closure under normal traffic unless there are other mixture 
issues.  

7.2 Recommendations 

After evaluating the full-scale performance of WMA under simulated 
heavy aircraft traffic, WMA is recommended as a viable alternative to 
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HMA for wearing surfaces on airfields. Long-term performance of WMA 
compared to HMA should be documented through trial sections placed on 
active military airfields. Both HMA and WMA mixtures utilizing the same 
source materials should be placed and their performance monitored for at 
least two years. 
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Appendix A: Raw temperature data 
Figure A1. HMA pavement temperature range - south end. 

 

Figure A2. HMA pavement temperature range – center of the item. 

 

50

60

70

80

90

100

110

120

130

140

1/26/13 1/30/13 2/3/13 2/7/13 2/11/13 2/15/13

T
em

p
er

at
u

re
 (

ºF
)

Date

Item 1 - South

Inside - Air

Top

Middle

Bottom

Test Period

50

60

70

80

90

100

110

120

130

140

1/26/13 1/30/13 2/3/13 2/7/13 2/11/13 2/15/13

T
em

p
er

at
u

re
 (

ºF
)

Date

Item 1 - Center

Inside - Air

Top

Middle

Bottom

Test Period



ERDC/GSL TR-14-3 80 

 

Figure A3. HMA pavement temperature range – north end 

 

Figure A4. Foamed Asphalt pavement temperature range - south end. 
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Figure A5. Foamed Asphalt pavement temperature range – center of the item. 

 

Figure A6. Foamed Asphalt pavement temperature range – north end. 
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Figure A7. Sasobit® pavement temperature range - south end. 

 

Figure A8. Sasobit® pavement temperature range – center of the item. 
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Figure A9. Sasobit® pavement temperature range – north end. 

 

Figure A10. EvothermTM 3G pavement temperature range - south end. 
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Figure A11. EvothermTM 3G pavement temperature range – center of the item. 

 

Figure A12. EvothermTM 3G pavement temperature range – north end. 
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Appendix B: Permanent deformation data 
Figure B1. HMA cross section permanent deformation at STA 0+10. 

 

Figure B2. HMA cross section permanent deformation at STA 0+15. 
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Figure B3. HMA cross section permanent deformation at STA 0+20. 

 

Figure B4. HMA cross section permanent deformation at STA 0+25. 
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Figure B5. HMA cross section permanent deformation at STA 0+30. 

 

Figure B6. HMA cross section permanent deformation at STA 0+35. 
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Figure B7. HMA cross section permanent deformation at STA 0+40. 

 

Figure B8. Foamed Asphalt cross section permanent deformation at STA 0+10. 
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Figure B9. Foamed Asphalt cross section permanent deformation at STA 0+15. 

 

Figure B10. Foamed Asphalt cross section permanent deformation at STA 0+20. 

 

‐5

‐4

‐3

‐2

‐1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12

El
e
va
ti
o
n
 (
in
.)

Station (ft)

Foamed Asphalt
Cross Section Station 15

Pass 0

Pass 23

Pass 46

Pass 94

Pass 188

Pass 372

Pass 742

Pass 1110

Pass 1480

Pass 1850

Pass 2218

Pass 2956

Pass 3694

Pass 4800

Pass 5906

Pass 7012
FAILURE CRITERION = 1 in.

TEST DATA NORMALIZED TO ZERO

‐5

‐4

‐3

‐2

‐1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12

El
e
va
ti
o
n
 (
in
.)

Station (ft)

Foamed Asphalt
Cross Section Station 20

Pass 0

Pass 23

Pass 46

Pass 94

Pass 188

Pass 372

Pass 742

Pass 1110

Pass 1480

Pass 1850

Pass 2218

Pass 2956

Pass 3694

Pass 4800

Pass 5906

Pass 7012
FAILURE CRITERION = 1 in.

TEST DATA NORMALIZED TO ZERO



ERDC/GSL TR-14-3 90 

 

Figure B11. Foamed Asphalt cross section permanent deformation at STA 0+25. 

 

Figure B12. Foamed Asphalt cross section permanent deformation at STA 0+30. 
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Figure B13. Foamed Asphalt cross section permanent deformation at STA 0+35. 

 

Figure B14. Foamed Asphalt cross section permanent deformation at STA 0+40. 
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Figure B15. Sasobit® cross section permanent deformation at STA 0+10. 

 

Figure B16. Sasobit® cross section permanent deformation at STA 0+15. 
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Figure B17. Sasobit® cross section permanent deformation at STA 0+20. 

 

Figure B18. Sasobit® cross section permanent deformation at STA 0+25. 
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Figure B19. Sasobit® cross section permanent deformation at STA 0+30. 

 

Figure B20. Sasobit® cross section permanent deformation at STA 0+35. 
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Figure B21. Sasobit® cross section permanent deformation at STA 0+40. 

 

Figure B22. EvothermTM 3G cross section permanent deformation at STA 0+10. 
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Figure B23. EvothermTM 3G cross section permanent deformation at STA 0+15. 

 

Figure B24. EvothermTM 3G cross section permanent deformation at STA 0+20. 
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Figure B25. EvothermTM 3G cross section permanent deformation at STA 0+25. 

 

Figure B26. EvothermTM 3G cross section permanent deformation at STA 0+30. 
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Figure B27. EvothermTM 3G cross section permanent deformation at STA 0+35. 

 

Figure B28. EvothermTM 3G cross section permanent deformation at STA 0+40. 
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Appendix C: FWD raw data 
Figure C1. FWD test raw data for HMA (pre-traffic at ambient temperature). 

 

0 mil 12 mil 24 mil 36 mil 48 mil 60 mil 72 mil
0+10 1 65 215.9 23608.0 21.1 14.6 8.9 6.1 4.8 3.7 3.1 1119.4
0+10 2 65 214.8 23486.0 19.6 13.6 8.5 5.9 4.8 3.7 3.1 1197.7
0+10 3 65 213.7 23375.0 19.6 13.4 8.4 5.9 4.8 3.7 3.1 1193.8
0+10 4 65 173.0 18914.0 15.8 10.9 6.9 4.8 3.9 3.0 2.5 1196.3
0+10 5 65 173.1 18930.0 15.7 10.9 6.8 4.8 3.9 3.0 2.5 1208.0
0+10 6 65 125.8 13759.0 11.4 7.8 4.9 3.4 2.8 2.2 1.9 1208.0
0+10 7 65 79.9 8736.0 7.2 4.9 3.0 2.1 1.8 1.3 1.2 1206.6
0+15 1 65 214.5 23462.0 25.8 13.9 8.5 5.8 4.5 3.4 3.0 910.8
0+15 2 65 216.2 23645.0 18.9 12.8 8.0 5.7 4.6 3.6 3.2 1249.7
0+15 3 65 215.2 23537.0 18.7 12.5 8.0 5.7 4.6 3.7 3.2 1262.0
0+15 4 65 173.2 18942.0 16.0 10.2 6.4 4.6 3.8 3.0 2.6 1186.8
0+15 5 65 173.2 18945.0 15.7 10.1 6.4 4.6 3.8 3.0 2.6 1203.6
0+15 6 65 125.9 13772.0 11.7 7.4 4.6 3.3 2.7 2.1 1.9 1178.1
0+15 7 65 79.5 8692.0 7.6 4.9 2.8 2.0 1.6 1.3 1.1 1145.2
0+20 1 65 207.2 22662.0 31.8 16.0 9.6 6.4 4.8 3.7 3.1 713.5
0+20 2 65 208.3 22784.0 32.9 14.6 9.1 6.3 5.0 3.9 3.3 691.7
0+20 3 65 208.5 22796.0 21.4 14.3 9.0 6.3 5.0 3.9 3.4 1067.2
0+20 4 65 172.1 18815.0 17.5 11.7 7.3 5.1 4.1 3.2 2.7 1075.1
0+20 5 65 172.3 18842.0 17.3 11.6 7.2 5.1 4.0 3.2 2.7 1089.1
0+20 6 65 125.4 13716.0 12.6 8.4 5.1 3.6 2.9 2.3 1.9 1091.2
0+20 7 65 79.6 8699.0 8.1 5.3 3.2 2.2 1.8 1.4 1.2 1074.0
0+25 1 65 212.9 23283.0 22.8 15.9 10.0 6.5 4.7 3.2 2.7 1020.7
0+25 2 65 213.6 23363.0 20.7 14.4 9.3 6.4 4.9 3.6 3.1 1129.7
0+25 3 65 213.0 23288.0 19.9 14.1 9.2 6.4 5.0 3.6 3.1 1173.2
0+25 4 65 173.3 18953.0 16.3 11.4 7.5 5.2 4.0 3.0 2.6 1164.2
0+25 5 65 174.0 19033.0 16.1 11.4 7.4 5.2 4.0 3.0 2.6 1180.7
0+25 6 65 125.1 13677.0 11.7 8.2 5.3 3.7 2.9 2.1 1.8 1170.0
0+25 7 65 79.3 8676.0 7.4 5.0 3.2 2.2 1.8 1.3 1.2 1172.4
0+30 1 65 208.3 22784.0 27.2 16.9 9.4 6.0 4.6 3.5 3.1 837.0
0+30 2 65 208.3 22784.0 23.0 15.3 8.7 5.9 4.7 3.8 3.3 992.8
0+30 3 65 208.1 22760.0 22.2 14.9 8.6 5.9 4.7 3.8 3.3 1027.1
0+30 4 65 171.3 18728.0 18.0 12.2 7.0 4.8 3.9 3.1 2.7 1038.1
0+30 5 65 171.1 18712.0 17.9 12.0 7.0 4.8 3.9 3.1 2.7 1047.1
0+30 6 65 124.8 13648.0 13.0 8.7 5.0 3.4 2.8 2.2 1.9 1047.4
0+30 7 65 79.2 8660.0 8.5 5.6 3.1 2.1 1.7 1.4 1.2 1022.4
0+35 1 65 212.3 23217.0 20.8 14.3 8.9 6.1 4.6 3.5 3.0 1116.7
0+35 2 65 212.2 23209.0 19.5 13.0 8.3 6.0 4.6 3.6 3.1 1190.2
0+35 3 65 211.4 23117.0 19.0 12.7 8.2 5.8 4.7 3.6 3.1 1214.8
0+35 4 65 172.1 18819.0 15.7 10.4 6.6 4.7 3.8 2.9 2.6 1197.1
0+35 5 65 172.9 18906.0 15.7 10.3 6.6 4.7 3.8 3.0 2.6 1208.1
0+35 6 65 124.7 13637.0 11.4 7.5 4.7 3.4 2.7 2.1 1.8 1197.3
0+35 7 65 78.2 8554.0 7.4 4.7 2.9 2.1 1.7 1.3 1.1 1155.9
0+40 1 65 208.6 22815.0 21.5 14.3 8.8 6.0 4.6 3.6 3.2 1061.2
0+40 2 65 209.5 22911.0 19.6 13.3 8.4 6.0 4.7 3.8 3.3 1168.9
0+40 3 65 210.4 23010.0 19.2 13.1 8.3 6.0 4.8 3.8 3.3 1199.7
0+40 4 65 170.3 18628.0 15.7 10.6 6.7 4.8 3.9 3.1 2.7 1190.3
0+40 5 65 170.5 18641.0 15.5 10.5 6.7 4.8 3.9 3.1 2.7 1199.5
0+40 6 65 124.2 13581.0 11.3 7.6 4.8 3.4 2.8 2.2 1.9 1201.9
0+40 7 65 78.6 8596.0 7.3 4.8 3.0 2.1 1.8 1.4 1.2 1172.7

Surface    
Temperature (ºF )

Deflection at distance from center of the load plate ( in.)
Station ID Drop Stress (psi) Force ( lb) ISM (k ips/in.)
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Figure C2. FWD test raw data for HMA (pre-traffic at high temperature). 

 

0 mil 12 mil 24 mil 36 mil 48 mil 60 mil 72 mil
0+10 1 105 222.70 24359.00 39.40 19.95 9.72 6.63 5.66 4.52 3.74 618.25
0+10 2 105 223.40 24433.00 30.81 17.08 9.30 6.68 5.62 4.47 3.70 793.02
0+10 3 105 222.50 24335.00 29.57 16.78 9.24 6.68 5.65 4.48 3.70 822.96
0+10 4 105 173.10 18934.00 24.59 13.68 7.50 5.48 4.63 3.68 3.01 769.99
0+10 5 105 173.40 18958.00 24.42 13.57 7.50 5.48 4.61 3.65 3.03 776.33
0+10 6 105 127.60 13957.00 18.40 9.90 5.33 3.92 3.31 2.62 2.17 758.53
0+10 7 105 82.50 9025.00 12.35 6.27 3.30 2.45 2.08 1.62 1.36 730.77
0+15 1 105 213.90 23394.00 43.30 18.70 9.75 6.80 5.25 3.68 3.11 540.28
0+15 2 105 215.20 23529.00 38.52 17.95 9.06 6.46 5.28 4.05 3.48 610.83
0+15 3 105 215.90 23605.00 32.49 17.77 8.92 6.40 5.30 4.13 3.58 726.53
0+15 4 105 170.90 18692.00 26.24 14.77 7.18 5.19 4.29 3.38 2.93 712.35
0+15 5 105 171.40 18747.00 25.93 14.72 7.19 5.23 4.34 3.44 3.00 722.98
0+15 6 105 125.30 13700.00 19.19 11.03 5.07 3.68 3.10 2.42 2.12 713.91
0+15 7 105 79.70 8715.00 12.55 7.00 3.08 2.24 1.94 1.48 1.31 694.42
0+20 1 105 209.00 22855.00 37.83 21.27 10.34 6.76 5.03 4.39 3.84 604.15
0+20 2 105 210.20 22987.00 34.41 19.28 9.83 6.96 5.58 4.67 3.94 668.03
0+20 3 105 210.30 23003.00 37.20 18.89 9.72 6.99 5.69 4.72 3.93 618.36
0+20 4 105 169.70 18557.00 36.94 15.49 7.85 5.71 4.71 3.86 3.19 502.36
0+20 5 105 169.70 18562.00 29.40 15.27 7.79 5.69 4.70 3.83 3.16 631.36
0+20 6 105 124.60 13629.00 21.46 11.13 5.51 4.00 3.33 2.68 2.26 635.09
0+20 7 105 78.90 8625.00 14.44 7.13 3.41 2.46 2.05 1.59 1.35 597.30
0+25 1 105 209.10 22868.00 36.25 18.05 10.63 7.35 5.49 3.53 2.74 630.84
0+25 2 105 211.30 23106.00 30.46 16.64 10.16 7.13 5.63 4.06 3.30 758.57
0+25 3 105 212.10 23193.00 29.19 16.57 10.06 7.08 5.63 4.11 3.39 794.55
0+25 4 105 169.90 18585.00 23.65 13.51 8.11 5.76 4.65 3.42 2.87 785.84
0+25 5 105 171.00 18704.00 23.35 13.39 8.08 5.76 4.66 3.46 2.93 801.03
0+25 6 105 124.10 13577.00 17.07 9.59 5.68 4.10 3.31 2.52 2.08 795.37
0+25 7 105 78.80 8617.00 11.10 5.93 3.45 2.52 2.12 1.55 1.32 776.31
0+30 1 105 202.40 22138.00 58.41 24.37 9.52 5.51 4.55 4.15 3.70 379.01
0+30 2 105 205.30 22455.00 47.40 20.48 8.86 5.98 5.07 4.36 3.81 473.73
0+30 3 105 205.80 22503.00 42.67 19.73 8.76 6.03 5.27 4.40 3.82 527.37
0+30 4 105 167.80 18347.00 34.39 16.36 7.17 4.97 4.34 3.59 3.13 533.50
0+30 5 105 167.80 18351.00 34.12 16.05 7.11 4.98 4.37 3.59 3.11 537.84
0+30 6 105 122.90 13442.00 25.52 12.09 5.09 3.51 3.09 2.52 2.22 526.72
0+30 7 105 78.20 8557.00 17.77 8.29 3.21 2.19 1.95 1.55 1.36 481.54
0+35 1 105 206.60 22598.00 43.20 17.56 9.35 6.59 5.20 3.88 3.31 523.10
0+35 2 105 209.10 22863.00 30.26 16.45 8.99 6.39 5.20 4.03 3.47 755.55
0+35 3 105 209.00 22860.00 24.08 16.30 8.90 6.33 5.19 4.03 3.50 949.34
0+35 4 105 171.30 18728.00 22.60 13.27 7.20 5.14 4.21 3.29 2.85 828.67
0+35 5 105 171.50 18760.00 22.53 13.09 7.01 5.11 4.25 3.25 2.83 832.67
0+35 6 105 123.50 13510.00 17.37 9.94 5.02 3.65 3.04 2.19 2.02 777.78
0+35 7 105 78.80 8620.00 11.51 7.20 3.07 2.24 1.90 1.43 1.26 748.91
0+40 1 105 208.60 22815.00 37.59 18.69 9.37 6.10 4.74 4.14 3.50 606.94
0+40 2 105 209.30 22891.00 31.16 17.28 9.06 6.31 5.15 4.25 3.64 734.63
0+40 3 105 208.80 22839.00 30.85 16.90 8.96 6.33 5.22 4.33 3.67 740.32
0+40 4 105 171.60 18763.00 25.32 13.81 7.26 5.16 4.29 3.53 2.99 741.03
0+40 5 105 171.70 18776.00 25.19 13.62 7.19 5.14 4.29 3.53 2.99 745.38
0+40 6 105 123.90 13550.00 18.74 10.04 5.18 3.68 3.07 2.48 2.11 723.05
0+40 7 105 77.60 8482.00 12.19 6.38 3.16 2.25 1.89 1.50 1.30 695.82
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Figure C3. FWD test raw data for HMA (post-traffic at high temperature). 

 

0 mil 12 mil 24 mil 36 mil 48 mil 60 mil 72 mil
0+10 1 103 224.30 24533.00 31.87 16.50 9.22 6.96 5.96 4.70 3.96 769.78
0+10 2 103 223.30 24422.00 29.85 16.55 9.28 7.00 5.99 4.71 4.02 818.16
0+10 3 103 222.60 24338.00 29.61 16.52 9.26 6.98 6.01 4.69 3.99 821.95
0+10 4 103 173.30 18950.00 25.05 13.63 7.61 5.74 4.89 3.81 3.27 756.49
0+10 5 103 173.40 18966.00 24.12 13.59 7.61 5.73 4.90 3.83 3.27 786.32
0+10 6 103 128.10 14010.00 19.70 9.74 5.36 4.04 3.43 2.68 2.29 711.17
0+10 7 103 84.60 9247.00 13.33 5.94 3.28 2.46 2.11 1.62 1.42 693.70
0+15 1 103 213.50 23344.00 39.03 20.82 11.04 7.66 5.79 4.70 3.82 598.10
0+15 2 103 213.20 23315.00 36.35 19.76 10.74 7.50 6.30 4.74 4.16 641.40
0+15 3 103 212.70 23259.00 33.05 19.58 10.74 7.50 6.28 4.75 4.16 703.75
0+15 4 103 170.50 18644.00 29.04 15.93 8.63 6.04 5.06 3.87 3.35 642.01
0+15 5 103 170.60 18657.00 29.21 15.80 8.61 6.03 5.05 3.85 3.36 638.72
0+15 6 103 125.70 13748.00 23.15 11.39 6.06 4.25 3.57 2.73 2.36 593.87
0+15 7 103 79.80 8731.00 15.57 7.08 3.67 2.63 2.22 1.70 1.45 560.76
0+20 1 103 204.60 22379.00 28.94 19.70 11.18 8.00 6.20 4.17 3.79 773.29
0+20 2 103 211.40 23117.00 26.57 18.54 10.79 8.01 6.52 4.63 4.05 870.04
0+20 3 103 213.40 23336.00 27.20 18.40 10.74 8.13 6.52 4.72 4.09 857.94
0+20 4 103 170.50 18644.00 22.50 14.85 8.65 6.55 5.29 3.83 3.33 828.62
0+20 5 103 171.50 18760.00 22.53 14.76 8.61 6.46 5.26 3.95 3.37 832.67
0+20 6 103 127.00 13891.00 16.63 10.58 6.08 4.54 3.77 2.69 2.36 835.30
0+20 7 103 84.20 9212.00 11.40 6.56 3.65 2.80 2.22 1.74 1.47 808.07
0+25 1 103 193.70 21182.00 74.16 31.26 9.19 6.24 5.28 4.02 3.66 285.63
0+25 2 103 198.90 21753.00 61.95 25.53 8.83 6.42 5.55 4.39 3.92 351.14
0+25 3 103 200.30 21903.00 59.45 23.07 8.82 6.51 5.59 4.49 3.96 368.43
0+25 4 103 163.10 17835.00 49.50 19.59 7.27 5.26 4.59 3.66 3.24 360.30
0+25 5 103 163.00 17824.00 48.35 18.97 7.23 5.26 4.57 3.65 3.23 368.65
0+25 6 103 124.40 13605.00 37.63 14.92 5.22 3.70 3.21 2.63 2.26 361.55
0+25 7 103 79.50 8692.00 27.79 10.56 3.24 2.25 1.95 1.39 1.38 312.77
0+30 1 103 213.30 23331.00 26.49 15.76 9.43 7.00 5.68 4.66 4.07 880.75
0+30 2 103 214.80 23494.00 26.52 15.70 9.40 7.00 5.67 4.74 4.10 885.90
0+30 3 103 216.20 23648.00 26.52 15.67 9.41 7.00 5.70 4.76 4.10 891.70
0+30 4 103 171.90 18795.00 22.11 12.83 7.64 5.65 4.63 3.83 3.32 850.07
0+30 5 103 173.60 18990.00 22.03 12.81 7.64 5.68 4.55 3.85 3.34 862.01
0+30 6 103 127.20 13906.00 16.70 9.30 5.41 4.02 3.20 2.72 2.35 832.69
0+30 7 103 82.90 9064.00 11.17 5.84 3.33 2.48 2.06 1.68 1.44 811.46
0+35 1 103 211.80 23164.00 33.42 16.52 9.63 6.96 5.80 4.51 3.88 693.12
0+35 2 103 210.70 23042.00 28.35 16.42 9.62 6.96 5.79 4.50 3.85 812.77
0+35 3 103 210.60 23026.00 28.16 16.40 9.62 6.96 5.79 4.50 3.85 817.68
0+35 4 103 172.50 18863.00 25.97 13.41 7.76 5.62 4.69 3.63 3.15 726.34
0+35 5 103 172.70 18887.00 24.87 13.35 7.74 5.61 4.69 3.65 3.16 759.43
0+35 6 103 125.20 13696.00 19.64 9.70 5.47 3.98 3.32 2.56 2.24 697.35
0+35 7 103 80.40 8795.00 13.43 6.20 3.40 2.46 2.06 1.58 1.41 654.88
0+40 1 103 205.10 22432.00 31.31 17.76 8.91 6.56 5.37 4.23 3.70 716.45
0+40 2 103 209.30 22891.00 39.50 17.26 9.00 6.82 5.47 4.63 3.92 579.52
0+40 3 103 209.50 22915.00 34.21 17.13 8.86 6.81 5.50 4.65 3.91 669.83
0+40 4 103 171.30 18728.00 28.87 13.88 7.32 5.51 4.51 3.78 3.17 648.70
0+40 5 103 171.60 18771.00 28.98 13.65 7.30 5.42 4.59 3.75 3.12 647.72
0+40 6 103 124.20 13585.00 21.62 9.81 5.12 3.82 3.25 2.64 2.25 628.35
0+40 7 103 79.20 8660.00 14.29 6.27 3.19 2.45 1.92 1.70 1.42 606.02
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Figure C4. FWD test raw data for Foamed Asphalt (pre-traffic at ambient temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 55 218.50 23891.00 19.14 12.65 8.00 5.73 4.61 3.39 2.80 1248.22
0+10 2 55 217.30 23767.00 18.65 12.32 7.83 5.67 4.48 3.50 2.92 1274.37
0+10 3 55 216.90 23719.00 18.55 12.18 7.84 5.68 4.52 3.52 2.93 1278.65
0+10 4 55 173.00 18922.00 15.11 9.83 6.33 4.59 3.70 2.83 2.38 1252.28
0+10 5 55 173.10 18926.00 14.98 9.95 6.31 4.57 3.64 2.86 2.41 1263.42
0+10 6 55 123.30 13481.00 10.83 7.12 4.46 3.24 2.61 2.06 1.74 1244.78
0+10 7 55 81.20 8882.00 6.86 4.41 2.72 1.98 1.59 1.34 1.14 1294.75
0+15 1 55 219.90 24045.00 17.90 12.48 7.84 5.41 4.16 3.03 2.65 1343.30
0+15 2 55 221.20 24195.00 17.18 11.92 7.59 5.42 4.33 3.29 2.84 1408.32
0+15 3 55 221.60 24235.00 17.06 11.87 7.57 5.43 4.35 3.33 2.84 1420.57
0+15 4 55 172.50 18866.00 13.78 9.58 6.13 4.41 3.56 2.74 2.35 1369.09
0+15 5 55 172.70 18882.00 13.69 9.57 6.15 4.41 3.56 2.73 2.35 1379.25
0+15 6 55 121.30 13264.00 9.70 6.77 4.33 3.13 2.55 2.00 1.70 1367.42
0+15 7 55 77.40 8470.00 6.15 4.16 2.63 1.91 1.57 1.22 1.04 1377.24
0+20 1 55 213.20 23320.00 21.62 13.81 8.23 5.57 4.31 3.11 2.69 1078.63
0+20 2 55 213.20 23315.00 20.19 13.04 7.91 5.56 4.44 3.37 2.89 1154.78
0+20 3 55 213.20 23312.00 19.90 12.93 7.91 5.59 4.50 3.42 2.93 1171.46
0+20 4 55 169.50 18538.00 16.33 10.55 6.43 4.56 3.67 2.80 2.41 1135.21
0+20 5 55 169.90 18577.00 16.22 10.47 6.42 4.56 3.67 2.82 2.43 1145.31
0+20 6 55 121.90 13331.00 11.73 7.62 4.59 3.27 2.64 2.03 1.77 1136.49
0+20 7 55 78.60 8593.00 7.55 4.76 2.83 2.03 1.66 1.30 1.11 1138.15
0+25 1 55 215.20 23537.00 20.56 13.57 8.60 5.97 4.55 3.27 2.77 1144.80
0+25 2 55 216.60 23692.00 19.34 12.80 8.26 5.93 4.70 3.56 3.02 1225.03
0+25 3 55 217.00 23727.00 19.04 12.72 8.24 5.94 4.73 3.61 3.06 1246.17
0+25 4 55 168.30 18406.00 15.46 10.31 6.71 4.84 3.88 2.95 2.51 1190.56
0+25 5 55 168.60 18443.00 15.34 10.26 6.68 4.83 3.87 2.95 2.51 1202.28
0+25 6 55 123.70 13529.00 11.04 7.43 4.74 3.44 2.74 2.17 1.80 1225.45
0+25 7 55 79.50 8696.00 7.04 4.47 2.91 2.13 1.74 1.37 1.13 1235.23
0+30 1 55 211.20 23098.00 22.51 14.06 8.33 5.72 4.50 3.33 2.85 1026.12
0+30 2 55 211.10 23082.00 21.74 13.38 8.01 5.69 4.61 3.59 3.09 1061.73
0+30 3 55 210.40 23006.00 21.59 13.27 7.98 5.70 4.63 3.62 3.12 1065.59
0+30 4 55 168.20 18398.00 17.50 10.75 6.46 4.63 3.81 2.97 2.55 1051.31
0+30 5 55 169.30 18517.00 17.44 10.69 6.44 4.61 3.77 2.96 2.55 1061.75
0+30 6 55 121.80 13315.00 12.61 7.73 4.59 3.29 2.73 2.13 1.83 1055.91
0+30 7 55 77.90 8514.00 8.02 4.88 2.84 2.04 1.66 1.33 1.17 1061.60
0+35 1 55 211.70 23148.00 18.83 11.75 7.50 5.27 4.26 3.06 2.78 1229.31
0+35 2 55 214.00 23402.00 18.18 11.09 7.22 5.26 4.29 3.33 2.91 1287.24
0+35 3 55 214.00 23407.00 17.87 11.01 7.19 5.25 4.30 3.32 2.94 1309.85
0+35 4 55 165.60 18105.00 16.78 8.93 5.85 4.28 3.50 2.71 2.37 1078.96
0+35 5 55 166.10 18160.00 14.61 8.90 5.83 4.28 3.51 2.72 2.39 1242.98
0+35 6 55 123.50 13502.00 10.57 6.41 4.20 3.06 2.54 1.96 1.74 1277.39
0+35 7 55 79.20 8660.00 7.14 3.97 2.57 1.89 1.54 1.28 1.06 1212.89
0+40 1 55 208.90 22847.00 19.49 11.85 7.31 5.19 4.15 3.30 2.80 1172.24
0+40 2 55 209.00 22855.00 18.58 11.30 7.15 5.24 4.31 3.48 2.93 1230.09
0+40 3 55 209.00 22860.00 18.33 11.24 7.15 5.25 4.34 3.52 2.96 1247.14
0+40 4 55 169.30 18509.00 14.85 9.10 5.80 4.27 3.55 2.81 2.42 1246.40
0+40 5 55 169.50 18533.00 14.70 9.08 5.79 4.26 3.54 2.82 2.43 1260.75
0+40 6 55 121.90 13336.00 10.65 6.52 4.13 3.04 2.53 1.98 1.74 1252.21
0+40 7 55 77.30 8454.00 6.76 4.07 2.56 1.89 1.59 1.28 1.10 1250.59
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Figure C5. FWD test raw data for Foamed Asphalt (pre-traffic at high temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 104 230.70 25234.00 38.06 16.79 9.35 6.76 5.54 4.26 2.52 663.01
0+10 2 104 230.60 25223.00 35.26 16.97 9.44 6.81 5.59 4.32 2.55 715.34
0+10 3 104 230.10 25167.00 35.16 17.04 9.47 6.84 5.59 4.33 2.55 715.78
0+10 4 104 178.10 19474.00 29.20 14.25 7.77 5.66 4.65 3.57 2.16 666.92
0+10 5 104 177.40 19397.00 25.04 14.16 7.72 5.65 4.60 3.56 2.15 774.64
0+10 6 104 129.40 14152.00 21.63 10.49 5.51 4.04 3.33 2.62 1.57 654.28
0+10 7 104 83.70 9148.00 15.05 6.78 3.39 2.55 2.03 1.59 1.00 607.84
0+15 1 106 226.60 24779.00 42.92 18.63 9.44 6.40 4.87 3.56 2.49 577.33
0+15 2 106 229.40 25088.00 37.33 16.93 9.14 6.43 5.13 3.89 2.61 672.06
0+15 3 106 228.90 25036.00 36.33 16.61 9.07 6.43 5.17 3.98 2.64 689.13
0+15 4 106 177.00 19355.00 29.87 13.70 7.42 5.30 4.31 3.31 2.20 647.97
0+15 5 106 175.40 19183.00 29.48 13.53 7.36 5.27 4.31 3.33 2.20 650.71
0+15 6 106 134.30 14687.00 21.44 9.94 5.27 3.81 3.10 2.37 1.56 685.03
0+15 7 106 88.40 9672.00 14.22 6.30 3.24 2.39 1.92 1.46 0.96 680.17
0+20 1 105 216.20 23640.00 45.09 20.83 9.94 6.66 5.17 3.72 2.45 524.28
0+20 2 105 217.50 23783.00 39.15 18.72 9.54 6.68 5.43 4.15 2.62 607.48
0+20 3 105 218.30 23875.00 37.62 18.52 9.52 6.69 5.44 4.28 2.66 634.64
0+20 4 105 170.40 18636.00 30.62 15.38 7.75 5.51 4.54 3.57 2.19 608.62
0+20 5 105 170.40 18636.00 26.24 15.24 7.72 5.48 4.52 3.62 2.20 710.21
0+20 6 105 126.30 13807.00 22.74 11.43 5.52 3.93 3.23 2.58 1.57 607.17
0+20 7 105 81.40 8903.00 16.13 7.59 3.48 2.51 2.07 1.61 1.00 551.95
0+25 1 97 228.40 24972.00 30.94 17.35 9.84 6.98 5.56 4.48 2.81 807.11
0+25 2 97 224.90 24596.00 35.24 17.19 9.82 6.96 5.62 4.48 2.81 697.96
0+25 3 97 226.30 24750.00 32.22 17.21 9.88 7.01 5.65 4.56 2.84 768.16
0+25 4 97 177.70 19434.00 26.59 14.28 8.07 5.74 4.59 3.71 2.27 730.88
0+25 5 97 176.80 19339.00 26.85 14.26 8.08 5.76 4.63 3.73 2.30 720.26
0+25 6 97 136.10 14882.00 19.86 10.44 5.74 4.11 3.28 2.65 1.61 749.35
0+25 7 97 85.40 9339.00 13.14 6.58 3.53 2.55 2.09 1.61 1.02 710.73
0+30 1 97 210.40 23006.00 57.50 21.97 9.60 6.51 5.08 3.63 2.59 400.10
0+30 2 97 211.70 23153.00 51.88 20.14 9.31 6.57 5.34 4.07 2.81 446.28
0+30 3 97 211.50 23129.00 50.43 20.08 9.31 6.57 5.38 4.17 2.83 458.64
0+30 4 97 167.80 18347.00 42.30 17.03 7.60 5.35 4.43 3.45 2.33 433.74
0+30 5 97 168.20 18398.00 38.01 17.01 7.57 5.32 4.42 3.48 2.33 484.03
0+30 6 97 124.30 13589.00 30.26 13.19 5.44 3.81 3.18 2.50 1.68 449.07
0+30 7 97 79.40 8680.00 22.59 9.15 3.41 2.39 2.03 1.52 1.06 384.24
0+35 1 97 218.20 23862.00 30.98 16.10 9.15 6.27 4.98 3.91 2.63 770.24
0+35 2 97 220.60 24124.00 27.39 14.99 8.83 6.29 5.08 4.07 2.69 880.76
0+35 3 97 219.50 24002.00 26.54 14.74 8.74 6.24 5.11 4.11 2.70 904.37
0+35 4 97 171.00 18700.00 21.94 12.20 7.14 5.10 4.17 3.35 2.17 852.32
0+35 5 97 172.10 18819.00 21.80 12.13 7.12 5.10 4.20 3.37 2.20 863.26
0+35 6 97 125.70 13748.00 16.17 8.87 5.07 3.64 2.98 2.39 1.56 850.22
0+35 7 97 81.10 8866.00 10.89 5.68 3.17 2.29 1.88 1.51 0.97 814.14
0+40 1 100 212.00 23185.00 36.53 18.63 9.38 6.57 5.38 4.84 3.39 634.68
0+40 2 100 210.80 23050.00 34.91 17.17 9.27 6.69 5.58 5.00 3.61 660.27
0+40 3 100 210.00 22971.00 33.59 16.87 9.25 6.70 5.61 4.46 3.64 683.86
0+40 4 100 170.00 18593.00 27.41 13.79 7.48 5.41 4.54 3.52 2.96 678.33
0+40 5 100 170.60 18660.00 25.76 13.73 7.51 5.42 4.52 3.48 2.92 724.38
0+40 6 100 124.40 13605.00 20.62 10.05 5.28 3.79 3.17 2.46 2.07 659.80
0+40 7 100 80.00 8744.00 14.31 6.56 3.30 2.36 1.98 1.56 1.31 611.04

ISM (k ips/in.)Station ID Drop
Surface    

Temperature (ºF) Stress (ksi) Force ( lb)
Deflection at distance from center of the load plate ( in.)



ERDC/GSL TR-14-3 104 

 

Figure C6. FWD test raw data for Foamed Asphalt (post-traffic at high temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 106 224.10 24512.00 39.85 17.55 9.43 6.68 5.49 4.47 3.68 615.11
0+10 2 106 224.60 24560.00 36.04 17.24 9.64 6.95 5.57 4.48 3.82 681.47
0+10 3 106 224.70 24568.00 32.61 17.24 9.60 6.97 5.68 4.52 3.84 753.39
0+10 4 106 173.80 19006.00 27.82 14.35 7.87 5.70 4.59 3.65 3.15 683.18
0+10 5 106 173.80 19006.00 28.00 14.32 7.92 5.74 4.63 3.68 3.16 678.79
0+10 6 106 129.00 14113.00 21.41 10.48 5.38 3.96 3.50 2.58 2.20 659.18
0+10 7 106 84.60 9247.00 14.70 6.98 3.71 2.63 1.86 1.63 1.41 629.05
0+15 1 106 199.90 21856.00 31.20 16.21 8.62 6.60 5.26 3.68 3.17 700.51
0+15 2 106 204.00 22308.00 27.31 15.33 8.62 6.61 5.42 3.98 3.37 816.84
0+15 3 106 204.80 22395.00 26.53 15.24 8.59 6.56 5.42 4.05 3.41 844.14
0+15 4 106 164.30 17967.00 22.72 12.52 7.02 5.30 4.43 3.34 2.78 790.80
0+15 5 106 164.50 17986.00 26.69 12.37 6.97 5.27 4.39 3.32 2.71 673.89
0+15 6 106 121.90 13336.00 17.48 8.87 4.89 3.67 3.09 2.29 1.90 762.93
0+15 7 106 76.10 8327.00 11.42 5.33 2.88 2.19 1.79 1.37 1.09 729.16
0+20 1 104 218.20 23859.00 46.72 21.72 9.79 6.87 5.56 4.00 3.59 510.68
0+20 2 104 217.30 23759.00 39.01 19.02 9.71 7.06 5.85 4.38 3.75 609.05
0+20 3 104 215.50 23569.00 35.33 18.52 9.70 7.12 5.94 4.51 3.78 667.11
0+20 4 104 170.20 18609.00 29.47 15.26 7.93 5.78 4.81 3.65 3.04 631.46
0+20 5 104 170.60 18652.00 30.23 15.07 7.92 5.79 4.81 3.67 3.07 617.00
0+20 6 104 126.60 13846.00 22.30 11.05 5.58 4.06 3.37 2.56 2.13 620.90
0+20 7 104 82.50 9021.00 15.00 7.20 3.50 2.54 2.12 1.58 1.39 601.40
0+25 1 101 217.10 23743.00 41.31 21.56 10.70 7.46 6.02 4.22 3.60 574.75
0+25 2 101 220.20 24084.00 33.12 19.01 10.53 7.61 6.28 4.69 3.84 727.17
0+25 3 101 221.00 24168.00 32.66 18.67 10.55 7.59 6.33 4.78 3.86 739.99
0+25 4 101 170.10 18601.00 26.95 15.19 8.70 6.09 5.31 3.89 3.21 690.20
0+25 5 101 169.60 18549.00 26.63 14.99 8.57 6.12 5.26 3.91 3.19 696.55
0+25 6 101 124.10 13569.00 19.83 10.69 5.87 4.22 3.70 2.66 2.35 684.27
0+25 7 101 82.60 9029.00 13.18 6.77 3.68 2.66 2.20 1.75 1.30 685.05
0+30 1 100 204.80 22400.00 49.17 30.57 9.52 6.39 5.53 4.38 3.40 455.56
0+30 2 100 207.50 22693.00 46.73 28.76 9.28 6.48 5.51 4.56 3.97 485.62
0+30 3 100 208.70 22823.00 45.77 27.83 9.36 6.53 5.61 4.56 3.51 498.65
0+30 4 100 164.00 17930.00 39.05 23.42 7.78 5.32 4.63 3.70 3.06 459.15
0+30 5 100 164.20 17959.00 35.78 22.90 7.76 5.37 4.67 3.70 3.16 501.93
0+30 6 100 126.70 13851.00 27.99 17.42 5.61 3.73 3.26 2.55 2.24 494.86
0+30 7 100 81.70 8929.00 18.95 11.97 3.50 2.23 1.97 1.52 1.33 471.19
0+35 1 100 220.30 24092.00 25.42 16.45 9.54 7.03 5.91 4.76 3.91 947.76
0+35 2 100 222.60 24346.00 26.98 16.31 9.60 7.05 5.94 4.89 3.91 902.37
0+35 3 100 222.20 24298.00 26.92 16.25 9.56 7.04 5.93 4.80 3.91 902.60
0+35 4 100 174.10 19037.00 23.18 13.41 7.79 5.67 4.81 3.85 3.17 821.27
0+35 5 100 174.40 19069.00 23.24 13.35 7.80 5.69 4.82 3.89 3.18 820.52
0+35 6 100 130.90 14311.00 17.35 9.74 5.50 4.00 3.37 2.81 2.21 824.84
0+35 7 100 86.10 9418.00 11.66 6.20 3.38 2.45 2.07 1.74 1.35 807.72
0+40 1 100 221.10 24176.00 29.26 16.67 9.58 7.06 5.96 4.82 3.94 826.25
0+40 2 100 221.50 24224.00 26.60 16.60 9.63 7.11 6.01 5.00 3.98 910.68
0+40 3 100 220.80 24148.00 25.85 16.48 9.63 7.11 6.02 4.94 3.96 934.16
0+40 4 100 174.50 19085.00 22.97 13.48 7.78 5.72 4.84 3.89 3.20 830.87
0+40 5 100 174.90 19128.00 22.99 13.45 7.78 5.72 4.85 3.92 3.20 832.01
0+40 6 100 125.30 13703.00 17.91 9.78 5.46 3.99 3.38 2.77 2.24 765.10
0+40 7 100 81.90 8961.00 12.22 6.20 3.32 2.41 2.05 1.67 1.35 733.31
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Figure C7. FWD test raw data for Sasobit® (pre-traffic at ambient temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 63 234.70 25670.00 19.55 12.43 7.97 5.82 4.60 3.34 2.85 1313.04
0+10 2 63 221.70 24248.00 18.19 11.88 7.77 5.80 4.65 3.41 2.92 1333.04
0+10 3 63 220.60 24124.00 17.91 11.80 7.78 5.81 4.65 3.44 2.94 1346.96
0+10 4 63 183.10 20029.00 14.67 9.66 6.34 4.74 3.81 2.82 2.41 1365.30
0+10 5 63 181.30 19826.00 14.56 9.61 6.34 4.65 3.79 2.86 2.43 1361.68
0+10 6 63 133.70 14623.00 10.44 6.89 4.50 3.29 2.67 2.02 1.74 1400.67
0+10 7 63 82.80 9053.00 6.65 4.29 2.78 2.02 1.66 1.26 1.12 1361.35
0+15 1 63 232.30 25405.00 19.35 12.65 7.87 5.56 4.41 3.31 2.91 1312.92
0+15 2 63 231.50 25313.00 18.01 11.88 7.64 5.54 4.51 3.49 3.01 1405.50
0+15 3 63 231.40 25310.00 17.66 11.79 7.61 5.54 4.52 3.52 3.03 1433.18
0+15 4 63 195.50 21385.00 14.56 9.67 6.23 4.52 3.69 2.87 2.47 1468.75
0+15 5 63 194.70 21297.00 14.43 9.61 6.21 4.53 3.69 2.88 2.49 1475.88
0+15 6 63 144.70 15821.00 10.36 6.90 4.45 3.22 2.63 2.04 1.80 1527.12
0+15 7 63 90.20 9865.00 6.81 4.32 2.75 1.99 1.65 1.30 1.13 1448.60
0+20 1 63 222.70 24351.00 20.93 13.00 7.77 5.35 4.14 3.30 2.87 1163.45
0+20 2 63 220.30 24092.00 19.39 12.07 7.48 5.34 4.26 3.50 3.00 1242.50
0+20 3 63 219.70 24029.00 19.09 11.88 7.38 5.30 4.33 3.52 3.02 1258.72
0+20 4 63 175.50 19188.00 15.52 9.70 6.04 4.36 3.52 2.84 2.47 1236.34
0+20 5 63 175.20 19156.00 15.39 9.65 6.01 4.35 3.52 2.85 2.48 1244.70
0+20 6 63 125.50 13719.00 11.06 7.01 4.29 3.09 2.50 2.02 1.77 1240.42
0+20 7 63 79.10 8649.00 7.08 4.44 2.65 1.89 1.59 1.30 1.13 1221.61
0+25 1 63 243.30 26611.00 20.03 12.08 7.30 5.09 3.98 2.96 2.69 1328.56
0+25 2 63 239.90 26233.00 17.48 11.22 7.02 5.02 4.04 3.12 2.85 1500.74
0+25 3 63 235.70 25778.00 17.21 11.15 6.99 5.01 4.04 3.17 2.84 1497.85
0+25 4 63 184.20 20143.00 13.99 9.07 5.70 4.10 3.30 2.63 2.33 1439.81
0+25 5 63 183.50 20071.00 13.92 9.04 5.69 4.12 3.30 2.62 2.38 1441.88
0+25 6 63 136.90 14969.00 10.15 6.55 4.08 2.96 2.37 1.87 1.71 1474.78
0+25 7 63 87.00 9513.00 6.45 4.14 2.54 1.87 1.52 1.17 1.20 1474.88
0+30 1 63 228.40 24977.00 23.02 14.07 7.80 5.25 3.98 3.01 2.63 1085.01
0+30 2 63 223.80 24470.00 21.59 12.91 7.45 5.20 4.11 3.24 2.76 1133.40
0+30 3 63 224.20 24517.00 21.03 12.74 7.44 5.20 4.14 3.24 2.79 1165.81
0+30 4 63 173.90 19022.00 17.15 10.35 6.04 4.23 3.38 2.59 2.28 1109.15
0+30 5 63 173.40 18961.00 16.90 10.25 6.02 4.21 3.37 2.56 2.28 1121.95
0+30 6 63 123.10 13458.00 12.19 7.44 4.28 3.00 2.41 1.81 1.64 1104.02
0+35 2 63 217.80 23822.00 19.61 12.47 7.72 5.44 4.34 3.28 2.87 1214.79
0+35 3 63 217.50 23791.00 19.28 12.30 7.69 5.44 4.32 3.25 2.87 1233.97
0+35 4 63 172.30 18842.00 15.73 10.00 6.22 4.49 3.52 2.67 2.37 1197.84
0+35 5 63 173.30 18953.00 15.54 9.96 6.18 4.46 3.48 2.65 2.33 1219.63
0+35 6 63 125.90 13767.00 11.33 7.21 4.45 3.23 2.50 1.91 1.71 1215.09
0+35 7 63 81.50 8914.00 7.37 4.59 2.76 1.97 1.61 1.24 1.10 1209.50
0+40 1 63 213.20 23315.00 22.57 13.72 8.04 5.62 4.48 3.46 2.91 1033.01
0+40 2 63 212.40 23225.00 21.45 13.03 7.80 5.59 4.56 3.55 3.02 1082.75
0+40 3 63 211.50 23129.00 21.17 12.89 7.79 5.59 4.56 3.54 3.03 1092.54
0+40 4 63 170.80 18684.00 17.21 10.56 6.39 4.56 3.71 2.84 2.50 1085.65
0+40 5 63 170.10 18596.00 17.03 10.47 6.35 4.55 3.72 2.73 2.51 1091.96
0+40 6 63 125.10 13677.00 12.41 7.60 4.57 3.26 2.67 1.92 1.81 1102.10
0+40 7 63 79.50 8692.00 8.03 4.85 2.86 2.04 1.69 1.80 1.17 1082.44

Station ID Drop
Surface    

Temperature (ºF) Stress (ksi) Force ( lb)
Deflection at distance from center of the load plate ( in.)

ISM (k ips/in.)



ERDC/GSL TR-14-3 106 

 

Figure C8. FWD test raw data for Sasobit® (pre-traffic at high temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 102 202.40 22130.00 27.36 13.98 8.31 6.17 5.09 3.99 3.34 808.85
0+10 2 102 204.00 22308.00 26.79 13.98 8.54 6.30 5.09 3.97 3.34 832.70
0+10 3 102 204.50 22360.00 26.58 13.94 8.24 6.15 5.09 3.98 3.34 841.23
0+10 4 102 163.30 17864.00 22.24 11.53 6.69 4.99 4.12 3.23 2.71 803.24
0+10 5 102 163.80 17914.00 22.17 11.48 6.71 5.00 4.13 3.21 2.69 808.03
0+10 6 102 113.40 12400.00 16.62 8.41 4.76 3.55 2.95 2.29 1.91 746.09
0+10 7 102 73.00 7986.00 10.85 5.44 2.83 2.14 1.85 1.43 1.22 736.04
0+15 1 102 199.00 21765.00 32.45 15.12 8.67 6.28 4.99 3.61 3.16 670.72
0+15 2 102 203.60 22260.00 28.11 13.52 8.43 6.11 5.02 3.75 3.32 791.89
0+15 3 102 205.20 22443.00 27.94 13.53 8.35 6.07 4.99 3.79 3.24 803.26
0+15 4 102 165.30 18081.00 23.13 11.11 6.69 4.95 4.01 3.09 2.59 781.71
0+15 5 102 165.60 18105.00 22.92 10.77 6.70 4.94 4.02 3.10 2.63 789.92
0+15 6 102 112.30 12284.00 16.81 7.82 4.77 3.53 2.82 2.19 1.86 730.76
0+15 7 102 73.20 8010.00 10.96 4.81 3.27 2.24 1.66 1.39 1.49 730.84
0+20 1 102 196.50 21488.00 34.77 16.32 8.19 5.65 4.54 3.38 3.18 618.00
0+20 2 102 199.60 21824.00 29.70 14.63 7.87 5.62 4.78 3.63 3.24 734.81
0+20 3 102 199.20 21784.00 28.88 14.35 7.77 5.66 4.75 3.76 3.27 754.29
0+20 4 102 160.60 17566.00 24.48 11.91 6.33 4.60 3.90 3.06 2.62 717.57
0+20 5 102 161.90 17705.00 24.29 11.86 6.36 4.64 3.94 3.09 2.68 728.90
0+20 6 102 115.00 12574.00 18.50 8.74 4.49 3.26 2.78 2.15 1.83 679.68
0+20 7 102 71.40 7803.00 12.16 5.53 2.69 2.01 1.72 1.31 1.24 641.69
0+25 1 102 201.90 22083.00 28.32 14.57 7.99 5.56 4.41 3.22 2.98 779.77
0+25 2 102 205.60 22482.00 22.95 13.05 7.47 5.43 4.47 3.47 3.12 979.61
0+25 3 102 206.10 22543.00 19.68 12.78 7.32 5.36 4.54 3.44 3.12 1145.48
0+25 4 102 166.50 18205.00 20.51 10.43 5.90 4.35 3.62 2.86 2.52 887.62
0+25 5 102 166.50 18205.00 20.28 10.33 5.85 4.33 3.61 2.84 2.51 897.68
0+25 6 102 113.00 12352.00 14.88 7.51 4.17 3.10 2.57 2.03 1.78 830.11
0+25 7 102 73.20 8006.00 9.52 4.77 2.56 1.94 1.63 1.29 1.11 840.97
0+30 1 102 193.50 21158.00 48.69 18.79 8.16 5.53 4.34 3.12 2.89 434.55
0+30 2 102 197.40 21583.00 42.54 16.43 7.73 5.47 4.47 3.33 2.93 507.36
0+30 3 102 199.00 21761.00 42.37 16.23 7.69 5.47 4.47 3.38 2.98 513.59
0+30 4 102 161.20 17626.00 36.04 13.68 6.20 4.42 3.61 2.75 2.41 489.07
0+30 5 102 161.40 17650.00 35.37 13.59 6.18 4.40 3.60 2.74 2.39 499.01
0+30 6 102 115.50 12633.00 27.49 10.40 4.43 3.13 2.57 1.98 1.74 459.55
0+35 2 102 197.40 21583.00 42.54 16.43 7.73 5.47 4.47 3.33 2.93 507.36
0+35 3 102 199.00 21761.00 42.37 16.23 7.69 5.47 4.47 3.38 2.98 513.59
0+35 4 102 161.20 17626.00 36.04 13.68 6.20 4.42 3.61 2.75 2.41 489.07
0+35 5 102 161.40 17650.00 35.37 13.59 6.18 4.40 3.60 2.74 2.39 499.01
0+35 6 102 115.50 12633.00 27.49 10.40 4.43 3.13 2.57 1.98 1.74 459.55
0+35 7 102 72.20 7895.00 18.98 6.99 2.71 1.93 1.61 1.23 1.08 415.96
0+40 1 102 197.60 21610.00 33.69 15.90 8.22 5.84 4.98 3.80 3.46 641.44
0+40 2 102 198.50 21705.00 31.93 15.74 8.26 5.80 5.02 3.70 3.41 679.77
0+40 3 102 199.50 21816.00 31.76 15.76 8.30 5.83 4.98 3.74 3.35 686.90
0+40 4 102 161.10 17613.00 25.59 12.99 6.65 4.72 3.94 3.10 2.66 688.28
0+40 5 102 160.90 17597.00 26.15 12.97 6.63 4.71 3.93 3.09 2.65 672.93
0+40 6 102 114.50 12519.00 20.31 9.58 4.71 3.36 2.81 2.18 1.88 616.40
0+40 7 102 71.70 7843.00 13.84 6.22 2.88 2.04 1.70 1.33 1.15 566.69
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Figure C9. FWD test raw data for Sasobit® (post-traffic at high temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 95 218.60 23907.00 43.72 16.93 9.09 6.74 5.81 4.15 3.79 546.82
0+10 2 95 218.70 23918.00 42.11 16.13 9.09 6.83 5.83 4.27 4.10 567.99
0+10 3 95 218.20 23862.00 38.04 15.96 9.10 6.89 5.83 4.48 3.87 627.29
0+10 4 95 171.60 18768.00 31.00 13.17 7.41 5.66 4.76 3.68 3.09 605.42
0+10 5 95 171.80 18787.00 29.41 13.06 7.39 5.65 4.77 3.68 3.09 638.80
0+10 6 95 121.50 13291.00 23.24 9.57 5.25 4.02 3.37 2.61 2.20 571.90
0+10 7 95 79.50 8692.00 16.02 6.09 3.22 2.45 2.07 1.59 1.35 542.57
0+15 1 97 222.90 24374.00 31.41 17.92 9.41 7.47 5.90 4.49 3.64 775.99
0+15 2 97 227.60 24893.00 32.20 16.11 9.10 7.22 5.89 4.66 3.81 773.07
0+15 3 97 228.00 24930.00 34.36 15.84 9.09 7.21 5.89 4.72 3.86 725.55
0+15 4 97 179.90 19672.00 29.95 12.91 7.38 5.87 4.76 3.81 3.15 656.83
0+15 5 97 180.10 19691.00 30.81 12.78 7.33 5.86 4.67 3.84 3.15 639.11
0+15 6 97 126.40 13819.00 23.30 9.34 5.27 4.19 3.35 2.74 2.24 593.09
0+15 7 97 83.90 9180.00 15.65 5.85 3.23 2.61 1.85 1.70 1.44 586.58
0+20 1 97 220.10 24065.00 41.13 18.02 9.43 7.06 5.77 4.16 3.83 585.10
0+20 2 97 223.80 24473.00 36.38 16.02 9.04 7.06 5.78 4.41 3.96 672.70
0+20 3 97 224.40 24544.00 36.31 15.76 9.02 6.94 5.76 4.46 3.86 675.96
0+20 4 97 176.80 19334.00 30.99 13.09 7.37 5.64 4.70 3.68 3.15 623.88
0+20 5 97 176.60 19318.00 30.93 13.03 7.35 5.65 4.70 3.70 3.15 624.57
0+20 6 97 123.90 13550.00 23.12 9.72 5.27 4.00 3.34 2.62 2.24 586.07
0+20 7 97 81.80 8950.00 15.75 6.34 3.24 2.46 2.06 1.62 1.39 568.25
0+25 1 95 224.40 24536.00 31.77 18.53 9.65 7.02 5.23 3.64 3.52 772.30
0+25 2 95 228.30 24961.00 29.24 16.31 9.66 7.27 5.29 3.87 3.68 853.66
0+25 3 95 229.10 25052.00 27.44 16.12 9.37 7.35 5.29 3.92 3.73 912.97
0+25 4 95 179.70 19648.00 22.93 13.19 7.81 5.97 4.30 3.21 3.08 856.87
0+25 5 95 179.10 19585.00 22.91 13.10 10.02 5.77 4.30 3.29 3.03 854.87
0+25 6 95 126.90 13875.00 16.94 9.52 5.61 4.05 2.99 2.35 2.13 819.07
0+25 7 95 82.90 9064.00 11.40 6.07 3.39 2.43 1.86 1.48 1.32 795.09
0+30 1 93 206.10 22535.00 69.41 23.51 8.91 6.70 5.25 3.67 3.05 324.67
0+30 2 93 214.10 23418.00 47.89 19.01 8.76 6.64 5.25 3.85 3.21 489.00
0+30 3 93 217.00 23732.00 45.37 18.67 8.89 6.65 5.26 3.80 3.14 523.08
0+30 4 93 175.20 19156.00 39.77 15.83 7.31 5.30 4.28 3.13 2.61 481.67
0+30 5 93 174.80 19112.00 41.71 15.76 7.35 5.31 4.30 3.17 2.68 458.21
0+30 6 93 133.20 14568.00 31.74 11.96 5.21 3.71 3.01 2.19 1.87 458.98
0+35 2 91 227.20 24845.00 31.68 17.21 9.71 7.35 5.35 4.18 3.59 784.25
0+35 3 91 225.80 24695.00 37.54 16.75 9.64 7.22 5.42 4.15 3.61 657.83
0+35 4 91 176.90 19342.00 24.67 13.69 7.87 5.82 4.55 3.49 2.89 784.03
0+35 5 91 176.80 19334.00 24.37 13.69 7.80 5.91 4.40 3.46 2.93 793.35
0+35 6 91 122.80 13431.00 18.04 9.74 5.51 4.11 3.16 2.39 2.07 744.51
0+35 7 91 80.20 8771.00 12.06 6.53 3.39 2.67 1.74 1.63 1.27 727.28
0+40 1 93 220.50 24116.00 38.46 20.24 10.57 7.39 5.95 4.22 3.63 627.04
0+40 2 93 222.70 24354.00 33.56 18.24 10.21 7.36 5.98 4.32 3.72 725.69
0+40 3 93 222.10 24290.00 33.12 17.93 10.14 7.35 5.94 4.34 3.63 733.39
0+40 4 93 174.40 19077.00 27.91 14.71 8.19 5.82 4.74 3.58 2.99 683.52
0+40 5 93 173.80 19006.00 27.62 14.56 8.12 5.78 4.75 3.58 3.00 688.12
0+40 6 93 121.80 13323.00 20.85 10.61 5.73 4.07 3.36 2.52 2.12 638.99
0+40 7 93 80.00 8752.00 14.63 6.89 3.56 2.53 2.04 1.58 1.32 598.22
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Figure C10. FWD test raw data for EvothermTM 3G (pre-traffic at ambient temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 58 225.10 24612.00 17.72 11.24 6.69 4.43 3.47 2.64 2.33 1388.94

0+10 2 58 223.80 24473.00 16.85 10.59 6.44 4.44 3.58 2.79 2.39 1452.40

0+10 3 58 222.90 24374.00 16.52 10.50 6.44 4.47 3.62 2.82 2.41 1475.42

0+10 4 58 175.10 19148.00 13.14 8.48 5.21 3.63 2.95 2.30 1.97 1457.23

0+10 5 58 175.00 19136.00 13.00 8.43 5.20 3.62 2.94 2.29 2.00 1472.00

0+10 6 58 129.80 14192.00 9.55 6.17 3.76 2.62 2.12 1.69 1.45 1486.07

0+10 7 58 83.50 9128.00 6.20 3.96 2.38 1.66 1.40 1.08 0.96 1472.26

0+15 1 58 225.70 24687.00 16.46 10.71 6.45 4.45 3.52 2.67 2.38 1499.82

0+15 2 58 228.00 24930.00 15.57 10.16 6.24 4.43 3.57 2.85 2.49 1601.16

0+15 3 58 228.80 25020.00 15.47 10.12 6.26 4.46 3.63 2.89 2.54 1617.32

0+15 4 58 175.00 19136.00 12.50 8.20 5.09 3.62 2.99 2.33 2.10 1530.88

0+15 5 58 175.70 19212.00 12.41 8.19 5.09 3.63 2.98 2.33 2.12 1548.11

0+15 6 58 126.80 13862.00 8.98 5.90 3.65 2.59 2.14 1.67 1.52 1543.65

0+15 7 58 80.90 8842.00 5.62 3.66 2.24 1.58 1.33 1.02 0.95 1573.31

0+20 1 58 220.80 24144.00 18.19 11.35 6.69 4.49 3.48 2.57 2.29 1327.32

0+20 2 58 221.80 24255.00 22.61 10.58 6.36 4.41 3.56 2.79 2.42 1072.76

0+20 3 58 221.90 24271.00 16.79 10.46 6.34 4.41 3.58 2.81 2.44 1445.56

0+20 4 58 170.30 18628.00 13.60 8.49 5.16 3.61 2.93 2.26 2.00 1369.71

0+20 5 58 170.10 18604.00 13.42 8.40 5.13 3.60 2.92 2.29 1.99 1386.29

0+20 6 58 125.20 13696.00 9.80 6.08 3.69 2.57 2.09 1.65 1.43 1397.55

0+20 7 58 78.90 8633.00 6.17 3.85 2.29 1.67 1.32 1.11 0.89 1399.19

0+25 1 59 227.40 24869.00 16.84 10.77 6.47 4.29 3.30 2.44 2.20 1476.78

0+25 2 59 228.10 24941.00 15.57 10.06 6.18 4.28 3.45 2.69 2.35 1601.86

0+25 3 59 227.70 24901.00 15.29 10.00 6.17 4.30 3.48 2.73 2.38 1628.58

0+25 4 59 172.80 18903.00 12.38 8.15 5.04 3.54 2.87 2.23 1.95 1526.90

0+25 5 59 173.30 18950.00 12.30 8.13 5.04 3.54 2.87 2.24 1.96 1540.65

0+25 6 59 130.00 14219.00 8.79 5.84 3.59 2.52 2.04 1.57 1.39 1617.63

0+25 7 59 82.30 8998.00 5.58 3.58 2.19 1.56 1.30 0.97 0.88 1612.54

0+30 1 60 215.40 23553.00 22.46 12.26 6.54 4.15 3.18 2.41 2.11 1048.66

0+30 2 60 215.60 23573.00 21.32 11.46 6.23 4.11 3.33 2.60 2.26 1105.68

0+30 3 60 215.60 23577.00 20.87 11.31 6.21 4.14 3.33 2.64 2.29 1129.71

0+30 4 60 169.20 18501.00 16.88 9.10 5.03 3.35 2.73 2.13 1.89 1096.03

0+30 5 60 170.00 18589.00 16.78 9.04 5.05 3.33 2.65 2.35 1.84 1107.81

0+30 6 60 125.20 13696.00 12.23 6.63 3.64 2.43 1.98 1.54 1.39 1119.87

0+30 7 60 78.80 8612.00 7.65 4.11 2.23 1.49 1.23 0.96 0.87 1125.75

0+35 1 60 223.60 24454.00 16.96 11.22 6.66 4.47 3.44 2.53 2.17 1441.86

0+35 2 60 224.50 24552.00 15.86 10.54 6.39 4.46 3.50 2.67 2.34 1548.05

0+35 3 60 224.30 24528.00 15.62 10.43 6.39 4.43 3.52 2.69 2.31 1570.29

0+35 4 60 172.30 18839.00 12.69 8.46 5.23 3.63 2.88 2.19 1.89 1484.55

0+35 5 60 172.70 18887.00 12.63 8.43 5.19 3.63 2.87 2.19 1.89 1495.41

0+35 6 60 125.40 13711.00 9.18 6.10 3.69 2.60 2.04 1.54 1.34 1493.57

0+35 7 60 79.60 8707.00 5.85 3.76 2.30 1.54 1.27 0.98 0.89 1488.38

0+40 1 60 214.70 23481.00 18.52 11.96 7.07 4.60 3.48 2.56 2.27 1267.87

0+40 2 60 214.00 23402.00 17.32 11.18 6.76 4.59 3.61 2.75 2.41 1351.15

0+40 3 60 213.20 23312.00 17.10 11.06 6.72 4.59 3.63 2.78 2.43 1363.27

0+40 4 60 172.70 18890.00 13.93 8.94 5.43 3.72 2.95 2.25 1.98 1356.07

0+40 5 60 173.40 18958.00 13.83 8.91 5.44 3.72 2.96 2.26 1.98 1370.79

0+40 6 60 126.70 13851.00 9.93 6.39 3.85 2.63 2.09 1.59 1.42 1394.86

0+40 7 60 80.60 8818.00 6.45 4.07 2.43 1.65 1.32 1.03 0.90 1367.13

Station ID Drop
Surface    

Temperature (ºF) Stress (ksi) Force ( lb)
Deflection at distance from center of the load plate ( in.)

ISM (k ips/in.)
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Figure C11. FWD test raw data for EvothermTM 3G (pre-traffic at high temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 109 211.50 23125.00 36.01 15.07 7.34 5.13 4.15 3.34 2.82 642.18

0+10 2 109 213.70 23375.00 30.38 13.70 7.18 5.15 4.25 3.39 2.88 769.42

0+10 3 109 213.50 23344.00 29.43 13.58 7.17 5.15 4.27 3.39 2.87 793.20

0+10 4 109 168.20 18398.00 24.35 11.20 5.86 4.25 3.52 2.78 2.37 755.56

0+10 5 109 168.40 18411.00 24.07 11.15 5.89 4.26 3.54 2.80 2.38 764.89

0+10 6 109 122.30 13370.00 18.25 8.20 4.21 3.06 2.56 2.02 1.70 732.60

0+10 7 109 77.80 8509.00 12.32 5.26 2.19 1.52 1.54 1.27 1.04 690.67

0+15 1 109 215.20 23529.00 36.02 13.82 7.30 5.15 4.11 2.78 2.84 653.22

0+15 2 109 216.20 23640.00 33.67 12.86 7.05 5.24 4.12 3.24 3.01 702.11

0+15 3 109 216.60 23692.00 28.56 11.97 7.03 5.23 4.15 3.26 3.05 829.55

0+15 4 109 167.40 18308.00 24.17 9.58 5.74 4.28 3.40 2.69 2.50 757.47

0+15 5 109 167.40 18303.00 24.23 10.26 5.31 4.27 3.41 2.66 2.52 755.39

0+15 6 109 121.50 13288.00 19.13 7.61 4.06 3.04 2.51 1.88 1.80 694.62

0+15 7 109 78.60 8593.00 12.70 4.87 2.48 1.88 1.59 1.11 1.26 676.61

0+20 1 109 208.90 22844.00 36.91 16.09 7.80 5.19 4.03 2.66 2.73 618.91

0+20 2 109 212.30 23217.00 28.65 14.44 7.43 5.20 4.26 3.18 2.92 810.37

0+20 3 109 213.10 23299.00 29.56 14.23 7.42 5.22 4.35 3.24 2.98 788.19

0+20 4 109 165.30 18078.00 24.99 11.90 6.07 4.29 3.56 2.74 2.43 723.41

0+20 5 109 166.10 18165.00 24.72 11.85 6.07 4.30 3.55 2.75 2.44 734.83

0+20 6 109 121.20 13251.00 18.78 8.71 4.26 3.02 2.55 1.96 1.73 705.59

0+20 7 109 77.10 8427.00 12.89 5.63 2.60 1.84 1.56 1.19 1.07 653.76

0+25 1 109 213.10 23307.00 31.99 14.67 7.53 4.83 3.62 2.52 2.50 728.57

0+25 2 109 216.10 23632.00 28.18 13.17 7.14 4.94 4.00 3.02 2.76 838.61

0+25 3 109 215.10 23518.00 27.17 12.87 7.07 4.94 4.04 3.10 2.79 865.59

0+25 4 109 167.10 18271.00 22.93 10.63 5.80 4.07 3.33 2.60 2.29 796.82

0+25 5 109 167.50 18316.00 22.57 10.52 5.78 4.07 3.34 2.61 2.29 811.52

0+25 6 109 125.90 13764.00 17.70 7.69 4.13 2.92 2.40 1.85 1.63 777.63

0+25 7 109 80.40 8795.00 12.28 4.83 2.53 1.81 1.50 1.15 1.01 716.21

0+30 1 109 200.80 21959.00 69.10 17.63 6.87 4.11 3.15 2.48 2.34 317.79

0+30 2 109 202.40 22130.00 58.58 16.26 6.80 4.50 3.51 3.05 2.57 377.77

0+30 3 109 202.70 22170.00 58.07 16.43 6.76 4.47 3.56 3.19 2.61 381.78

0+30 4 109 162.40 17756.00 46.29 14.05 5.47 3.70 2.95 2.70 2.16 383.58

0+30 5 109 162.60 17780.00 48.09 14.02 5.38 3.74 2.98 2.68 2.16 369.72

0+30 6 109 119.00 13018.00 36.70 10.90 3.77 2.79 2.19 1.96 1.54 354.71

0+30 7 109 74.60 8160.00 26.12 7.63 2.08 1.70 1.39 1.38 0.96 312.40

0+35 1 109 209.70 22934.00 31.35 14.92 7.67 5.00 3.85 3.00 2.63 731.55

0+35 2 109 213.60 23363.00 27.74 13.68 7.38 5.04 4.05 3.19 2.74 842.21

0+35 3 109 213.20 23315.00 27.07 13.48 7.33 5.02 4.06 3.18 2.75 861.29

0+35 4 109 167.50 18319.00 22.69 11.16 6.00 4.13 3.34 2.56 2.24 807.36

0+35 5 109 167.70 18340.00 22.56 11.12 6.00 4.17 3.34 2.59 2.22 812.94

0+35 6 109 122.20 13362.00 16.06 8.03 4.24 2.93 2.39 1.85 1.65 832.00

0+35 7 109 79.00 8641.00 10.79 5.38 2.67 1.93 1.48 1.21 1.11 800.83

0+40 1 109 202.70 22170.00 37.26 16.29 8.13 5.28 3.96 2.71 2.59 595.01

0+40 2 109 204.10 22316.00 32.39 14.96 7.76 5.28 4.17 3.07 2.77 688.98

0+40 3 109 204.20 22336.00 31.51 14.80 7.72 5.29 4.19 3.13 2.81 708.85

0+40 4 109 165.20 18062.00 25.80 12.10 6.20 4.28 3.41 2.56 2.28 700.08

0+40 5 109 165.00 18049.00 25.44 12.02 6.19 4.29 3.41 2.59 2.29 709.47

0+40 6 109 121.30 13267.00 19.25 8.89 4.40 3.08 2.45 1.81 1.60 689.19

0+40 7 109 76.80 8395.00 13.13 5.78 2.72 1.90 1.55 1.15 1.05 639.38

ISM (k ips/in.)Station ID Drop
Surface    

Temperature (ºF) Stress (ksi) Force ( lb)
Deflection at distance from center of the load plate ( in.)
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Figure C12. FWD test raw data for EvothermTM 3G (post-traffic at high temperature). 

 

0 in. 12 in. 24 in. 36 in 48 in. 60 in. 72 in.
0+10 1 101 237.90 26016.00 37.96 15.39 8.13 5.90 4.94 5.21 3.29 685.35

0+10 2 101 235.40 25742.00 37.25 15.48 8.22 5.92 4.95 5.10 3.29 691.06

0+10 3 101 236.10 25818.00 35.87 15.49 8.19 5.94 5.02 4.95 3.33 719.77

0+10 4 101 184.00 20119.00 28.93 12.96 6.70 4.85 4.10 3.41 2.70 695.44

0+10 5 101 183.90 20111.00 28.63 12.88 6.68 4.86 4.14 3.62 2.71 702.44

0+10 6 101 126.70 13851.00 21.26 9.60 4.81 3.52 2.94 2.58 1.93 651.51

0+10 7 101 82.70 9048.00 14.74 6.47 3.12 2.26 1.72 2.54 1.15 613.84

0+15 1 101 231.40 25305.00 34.16 16.18 7.83 5.84 4.87 3.44 3.00 740.78

0+15 2 101 237.70 25995.00 28.72 14.82 7.84 6.00 5.02 3.74 3.12 905.12

0+15 3 101 239.70 26210.00 30.28 14.82 7.89 6.00 5.02 3.09 2.53 865.59

0+15 4 101 183.10 20029.00 26.56 12.06 6.48 4.92 4.11 3.17 2.29 754.10

0+15 5 101 181.80 19881.00 25.44 11.99 6.47 4.91 4.14 3.18 2.46 781.49

0+15 6 101 138.80 15183.00 18.81 8.82 4.66 3.47 2.84 2.24 1.78 807.18

0+15 7 101 90.20 9865.00 12.91 5.48 2.81 2.05 2.17 1.35 1.56 764.14

0+20 1 101 226.20 24734.00 43.36 17.72 7.89 5.65 4.72 3.24 3.02 570.43

0+20 2 101 231.10 25274.00 38.31 16.80 8.02 5.77 4.86 3.64 3.22 659.72

0+20 3 101 230.80 25239.00 36.83 16.63 8.00 5.69 4.89 3.72 3.24 685.28

0+20 4 101 177.10 19370.00 30.53 14.11 6.70 4.76 4.00 3.12 2.66 634.46

0+20 5 101 176.30 19275.00 30.14 13.93 6.67 4.68 4.00 3.09 2.64 639.52

0+20 6 101 129.90 14203.00 23.20 10.56 4.77 3.39 2.85 2.25 1.91 612.20

0+20 7 101 84.20 9207.00 16.38 7.02 2.95 2.08 1.78 1.37 1.17 562.09

0+25 1 101 230.60 25223.00 32.47 16.51 8.24 5.81 4.56 3.09 2.93 776.81

0+25 2 101 235.70 25778.00 30.29 15.80 8.14 5.79 4.81 3.53 3.18 851.04

0+25 3 101 237.00 25913.00 30.18 15.77 8.15 5.77 4.83 3.63 3.22 858.61

0+25 4 101 177.20 19382.00 24.46 12.89 6.58 4.65 3.96 3.03 2.61 792.40

0+25 5 101 177.30 19386.00 24.57 12.77 6.61 4.70 3.98 3.04 2.62 789.01

0+25 6 101 134.90 14747.00 18.12 9.44 4.72 3.40 2.78 2.11 1.83 813.85

0+25 7 101 88.90 9722.00 12.05 5.85 2.85 2.09 1.64 1.31 1.14 806.80

0+30 1 101 210.50 23022.00 65.50 30.17 7.88 4.40 3.78 2.80 2.71 351.48

0+30 2 101 215.90 23605.00 55.00 25.91 7.77 4.90 4.27 3.17 2.90 429.18

0+30 3 101 217.20 23748.00 52.72 25.13 7.83 4.98 4.30 3.29 2.91 450.46

0+30 4 101 167.70 18343.00 45.23 21.48 6.58 4.12 3.54 2.76 2.37 405.55

0+30 5 101 167.10 18279.00 43.70 20.96 6.54 4.10 3.53 2.76 2.39 418.28

0+30 6 101 127.60 13954.00 34.27 16.44 4.81 2.91 2.48 1.95 1.66 407.18

0+30 7 101 81.10 8871.00 23.31 11.78 3.12 1.81 1.51 1.20 1.05 380.57

0+35 1 101 216.00 23624.00 62.07 15.73 8.27 6.02 4.36 3.30 2.77 380.60

0+35 2 101 221.50 24219.00 25.84 14.57 8.27 6.10 4.49 0.83 2.82 937.27

0+35 3 101 224.40 24544.00 25.81 14.62 8.31 6.02 4.63 3.68 2.93 950.95

0+35 4 101 181.30 19822.00 21.88 12.33 6.88 4.83 3.83 2.97 2.41 905.94

0+35 5 101 180.40 19727.00 22.18 12.35 6.95 4.97 3.81 2.65 2.44 889.40

0+35 6 101 139.20 15223.00 16.81 9.03 4.88 3.45 2.70 1.86 1.68 905.59

0+35 7 101 89.70 9814.00 11.53 5.72 2.96 2.07 1.70 1.37 1.06 851.17

0+40 1 101 226.10 24727.00 39.26 18.24 9.43 6.37 5.01 3.43 3.00 629.83

0+40 2 101 226.70 24790.00 38.80 17.50 9.37 6.42 5.10 3.64 3.15 638.92

0+40 3 101 225.40 24652.00 32.35 17.31 9.34 6.35 5.20 3.62 3.09 762.04

0+40 4 101 172.10 18823.00 33.47 14.08 7.46 5.07 4.14 2.91 2.53 562.38

0+40 5 101 172.70 18882.00 33.51 13.99 7.41 5.07 4.11 2.96 2.55 563.47

0+40 6 101 125.20 13692.00 24.19 10.30 5.20 3.57 2.88 2.09 1.78 566.02

0+40 7 101 80.40 8795.00 16.09 6.63 3.20 2.17 1.76 1.27 1.09 546.61

ISM (k ips/in.)
Surface    

Temperature (ºF) Stress (ksi) Force ( lb)
Deflection at distance from center of the load plate ( in.)

Station ID Drop
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Appendix D: Pavement Response Data 
Figure D1. Typical of EPC raw data from dynamic slow roll test. 

 

Figure D2. Typical of SSD raw data from dynamic slow roll test. 
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Figure D3. Typical of SSG raw data from dynamic slow roll test. 

 

Figure D4. Typical of ASG raw data from dynamic slow roll test. 
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Figure D5. Typical of EPC raw data from dynamic sweep test. 

 

Figure D6. Typical of SSD raw data from dynamic sweep test. 
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Figure D7. Typical of SSG raw data from dynamic sweep test. 

 

Figure D8. Typical of ASG raw data from dynamic sweep test. 
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